Math, asked by ishantramnani1408, 10 months ago

d
9. The HCF of two numbers is 23 and their
LCM is 1449. If one of the numbers is 161
what is the other?
(a

Answers

Answered by Anonymous
10

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The H.C.F of two numbers is 23 and their L.C.M is 1449.If one of the numbers is 161.

\bf{\red{\underline{\bf{To\:find\::}}}}

The other number.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the other number be r

We know that formula as;

\boxed{\bf{Product\:of\:two\:numbers=H.C.F.\times L.C.M.}}}}

A/q

\longrightarrow\sf{161\times r=23\times 1449}\\\\\\\longrightarrow\sf{161r=33327}\\\\\\\longrightarrow\sf{r=\cancel{\dfrac{33327}{161} }}\\\\\\\longrightarrow\sf{\pink{r=207}}

Thus;

The other number will be r = 207 .

Answered by BrainlyAnswerer0687
6

\black{\huge{\mathtt{\underline{\underline{ Given  : }}}}}\\

\red{\tt{\:\:}}

  • \red{\tt{\: HCF\:of\:two\: number = 23}}\\

  • \red{\tt{\: LCM\:of\:two\: number = 1449}}\\

  • \red{\tt{\: One\: number = 161}}\\

\red{\tt{\:\:}}

\black{\huge{\mathtt{\underline{\underline{ To\: Find  :}}}}}\\

\red{\tt{\:\:}}

  • \red{\tt{\: Other\: number }}\\

\red{\tt{\:\:}}

\black{\huge{\mathtt{\underline{\underline{ Solution :  }}}}}\\

\red{\tt{\:\:}}

\green{\tt{Let,\: the\: other\:no.\:be\:x}}\\

\red{\tt{\:\:}}

\green{\tt{Product\: of\:two\: no. = LCM \times HCF}}\\

\green{\tt{\implies  161 \times x = 1449 \times 23}}\\

\green{\tt{\implies  x = \dfrac{1449 \times 23}{161} }}\\

\green{\tt{\implies  x = \dfrac{1449 \times \cancel{23}}{\cancel{161}} }}\\

\green{\tt{\implies  x = \dfrac{1449 \times 1}{7} }}\\

\green{\tt{\implies  x = \dfrac{1449}{7} }}\\

\green{\tt{\implies  x = \dfrac{\cancel{1449}}{\cancel{7}} }}\\

\green{\tt{\implies  x = 207 }}\\

\red{\tt{\:\:}}

\blue{\bf{  Other\: number= 207 }}\\

Similar questions