Math, asked by gaonkarnamita7, 7 months ago

(D) A man travels in a boat 36 km down stream of a river and the same distance up stream of this river in
a total time of 9 hours. If the speed of his boat in still water is 12 km/hr, find the speed of the river
current. [Take V3 = 1.7]​

Answers

Answered by Ataraxia
68

GIVEN :-

  • Total distance travelled = 36 km
  • Total time taken = 9 hours
  • Speed of boat in still water = 12 km/hr

TO FIND :-

  • Speed of the river

SOLUTION :-

Let the speed of river be x.

Speed of boat downstream = ( 12 + x ) km/hr

Speed of boat upstream = ( 12 - x ) km/hr

\bf Time \ taken = \dfrac{Distance}{Speed}

Time taken to travel downstream = \sf\dfrac{36}{(x+2)}  hours

Time taken to travel upstream = \sf\dfrac{36}{(x-2)} hours

 According to the question,

 \longrightarrow\quad \sf \dfrac{36}{12+x}+\dfrac{36}{12-x}= 9 \\\\\longrightarrow\quad\dfrac{36(12+x)+36(12-x)}{(12+x)(12-x)}=9 \\\\\longrightarrow\quad\dfrac{36(12+x+12-x)}{(12^2-x^2)}} = 9 \\\\\longrightarrow\quad36 \times 24 = 9 (144-x^2)\\\\\longrightarrow\quad144-x^2 = \dfrac{36\times 24}{9}\\\\\longrightarrow\quad 144-x^2 = 96 \\\\\longrightarrow\quad x^2= 144-96 \\\\\longrightarrow\quad x^2 = 48 \\\\\longrightarrow\quad x = \sqrt{48} \\\\\longrightarrow\quad x = \sqrt{16\times 3} \\\\

\longrightarrow\quad \sf x = 4\sqrt{3} \\\\\longrightarrow\quad \sf x = 4\times 1.7 \\\\\longrightarrow\quad \bf x= 6.8

           

Speed of the river = 6.8 km/hr

Answered by Anonymous
334

Answer:

\tt {\pink{We \:  have}}\begin{cases} \sf{\green{Total  \: distance \:  travelled = 36 \:  km}}\\ \sf{\blue{Total  \: time \:  taken = 9  \: hours}}\\ \sf{\orange{Speed  \: of \:  boat  \: in  \: still \:  water = 12 \:  km/hr}}\\ \sf{\gray{Speed \:  of  \: the  \: river \: current= \: ?}}\end{cases}

  • Let the speed of river current be x km/hr

Here, x < 12

Therefore,

  • The speed of boat down the current = (12 + x) km/hr.

  • The speed of boat up the current = (12 - x) km/hr.

_______________

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

:\implies \sf \dfrac{36}{12 + x} + \dfrac{36}{12 - x} = 9 \\  \\  \\

:\implies \sf 36 \: (12 - x + 12 + x) = 9 \: (12 + x) \: (12 - x) \\  \\  \\

:\implies \sf 36 \times 24 = 9 \: (144 -  {x}^{2} ) \\  \\  \\

:\implies \sf 864 = 9 \: (144 -  {x}^{2} ) \\  \\  \\

:\implies \sf \dfrac{864}{9} = 144 -  {x}^{2}  \\  \\  \\

:\implies \sf 96 = 144 -  {x}^{2}  \\  \\  \\

:\implies \sf {x}^{2} = 144 - 96  \\  \\  \\

:\implies \sf {x}^{2} = 48  \\  \\  \\

:\implies \sf x=  \sqrt{48}   \\  \\  \\

:\implies \sf x=  \sqrt{16 \times 3}   \\  \\  \\

:\implies \sf x=  \sqrt{4 \times 4 \times 3}   \\  \\  \\

:\implies \sf x=  4\sqrt{3}   \\  \\  \\

:\implies \sf x=  4 \times 1.7  \:  \:  \:  \:  \:  \:  \Bigg\lgroup \bf{Taking \:  \sqrt{3} = 1.7 }\Bigg\rgroup \\  \\  \\

:\implies\underline{ \boxed{\textsf{\textbf{x = 6.8 km/hr}}}} \\ \\

\therefore\underline{\textsf{ The speed of river current is \textbf{6.8 km/hr}}}.

Similar questions