Math, asked by pokhrelganesh100, 26 days ago

d. cos^80 - sin^80 = 1/4cos20 (3 + cos 40)​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{cos^{8} ( \theta) - sin^{8} ( \theta)}

 \sf{ =  \{cos^{4} ( \theta) - sin^{4} ( \theta) \} \{ cos^{4} ( \theta)  +  sin^{4} ( \theta) \}}

 \sf{ =  cos( 2\theta)  \cdot [  \{ cos^{2} ( \theta)  +  sin^{2} ( \theta) \}^{2} - 2 sin^{2} ( \theta) cos^{2} ( \theta)   } ]

 \sf{ =  cos( 2\theta)  \cdot  \bigg[  (1 )^{2} -  \dfrac{1}{2}  \cdot4 sin^{2} ( \theta) cos^{2} ( \theta)   }  \bigg]

 \sf{ =  cos( 2\theta)  \cdot  \bigg[  1 -  \dfrac{1}{2}  \cdot sin^{2} ( 2\theta)  }  \bigg]

 \sf{ =   \dfrac{1}{4} cos( 2\theta)  \cdot  \bigg[  4 -  2 sin^{2} ( 2\theta)  }  \bigg]

 \sf{ =   \dfrac{1}{4} cos( 2\theta)  \cdot  \bigg[  4 -  (1 - cos(4 \theta))  }  \bigg]

 \sf{ =   \dfrac{1}{4} cos( 2\theta)  \cdot  \bigg[  4 -  1  +  cos(4 \theta)  }  \bigg]

 \sf{ =   \dfrac{1}{4} cos( 2\theta)  \cdot   \{  3 +  cos(4 \theta)  }  \}

Similar questions