Math, asked by harithavh123, 6 months ago

D) Differentiate each of the following funcion
1+√x/1-√x

Attachments:

Answers

Answered by harris1238099
2

Answer:

here's your answer to the question

Attachments:
Answered by shadowsabers03
5

Given,

\displaystyle\sf{\longrightarrow u=\dfrac {1+\sqrt x}{1-\sqrt x}}

Substitute,

\displaystyle\sf{\longrightarrow \sqrt x=\cos (2\theta)}

\displaystyle\sf{\longrightarrow x=\cos^2(2\theta)}

\displaystyle\sf{\longrightarrow \dfrac {dx}{d\theta}=-4\sin(2\theta)\cos (2\theta)}

Therefore,

\displaystyle\sf{\longrightarrow u=\dfrac {1+\cos (2\theta)}{1-\cos(2\theta)}}

\displaystyle\sf{\longrightarrow u=\dfrac {2\cos^2\theta}{2\sin^2\theta}}

\displaystyle\sf{\longrightarrow u=\dfrac {\cos^2\theta}{\sin^2\theta}}

By Quotient Rule,

\displaystyle\sf{\longrightarrow \dfrac {du}{d\theta}=\dfrac {-\sin (2\theta)}{\sin^4\theta}}

Hence, by Chain Rule,

\displaystyle\sf{\longrightarrow\dfrac {du}{dx}=\dfrac {du}{d\theta}\cdot\dfrac {d\theta}{dx}}

\displaystyle\sf{\longrightarrow\dfrac {du}{dx}=\dfrac {-\sin (2\theta)}{\sin^4\theta}\cdot\dfrac {1}{-4\sin (2\theta)\cos (2\theta)}}

\displaystyle\sf{\longrightarrow\dfrac {du}{dx}=\dfrac {1}{4\sin^4\theta}\cdot\dfrac {1}{\cos (2\theta)}}

\displaystyle\sf{\longrightarrow\dfrac {du}{dx}=\dfrac {1}{\cos (2\theta)(1-\cos(2\theta))^2}}

Undoing \displaystyle\sf {\sqrt x=\cos (2\theta),}

\displaystyle\underline {\underline {\sf{\longrightarrow\dfrac {du}{dx}=\dfrac {1}{\sqrt x(1-\sqrt x)^2}}}}

Similar questions