Physics, asked by indhusri42, 2 months ago

d/dx (1+2 tanx) (5+4cosx) differentiation

Answers

Answered by RISH4BH
35

Need to FinD :-

  • To find the derivative of given function.

\red{\frak{Given}}\bigg\{\sf \dfrac{d}{dx}(1+2tanx)(5+4cosx)

Here we can use the product rule of differenciation . Say we have two functions u and v and we need to differentiate uv . Then its differenciation with respect to x , will be , Let y = uv ,

\twoheadrightarrow\boxed{\sf \red{\dfrac{dy}{dx}= u\dfrac{dv}{dx}+v\dfrac{du}{dx} }}

Here ,

  • u = ( 1 + 2 tan x )
  • v = ( 5 + 4 cosx ) .
  • y = ( 1 + 2 tanx)(5 + 4 cos x)

\sf:\implies \dfrac{dy}{dx}= \dfrac{d}{dx}( 1 + 2tanx)(5+4cosx) \\\\\sf:\implies  \dfrac{dy}{dx}= (1+2tanx)\bigg[ \dfrac{d}{dx}(5+4cos x) \bigg] + (5+4cosx)\bigg[ \dfrac{d}{dx}(1+2tanx)\bigg] \\\\\sf:\implies  \dfrac{dy}{dx}= (1+2tanx)\bigg[ \dfrac{d}{dx}(5) + \dfrac{d}{dx}(4cosx) \bigg] + (5+4cosx)\bigg[ \dfrac{d}{dx}(1) + \dfrac{d}{dx}(2tanx) \bigg]

Now we know that , derivative of ,

  • cos x = -sin x
  • tan x = sec² x
  • Constant (C) = 0

Also , if ,

\sf\to\red{ \dfrac{dy}{dx}= \dfrac{d}{dx} \{c \: f(x) \} }

Where c is a constant , then constant can come out in form of multiplication. That is ,

\sf\to\red{ \dfrac{dy}{dx}= c\dfrac{d}{dx} f(x) }

\sf:\implies \dfrac{dy}{dx}= (1+2tanx)(0 + -4sinx)+(5+4cosx)(0+2sec^2x)  \\\\\sf:\implies \dfrac{dy}{dx} = (1+2tanx)(-4sinx) + (5+4cosx)(2sec^2x) \\\\\sf:\implies \dfrac{dy}{dx} = -4sinx - 8tanx.sinx + 10 sec^2x + 8 cosx.sec^2x  \\\\\sf:\implies \dfrac{dy}{dx} = -4sinx - \dfrac{8sin^2}{cosx} + \dfrac{10}{cos^2x} + \dfrac{8}{cosx} \\\\\sf:\implies \dfrac{dy}{dx}= -4sinx + 10sec^2x  + \dfrac{8sin^2x}{cosx}+\dfrac{8}{cosx} \\\\\sf:\implies \dfrac{dy}{dx} = -4sinx + 10sec^2x +\dfrac{8(1-sin^2x)}{cosx}  \\\\\sf:\implies \dfrac{dy}{dx}= -4sinx + 10 sec^2x + \dfrac{8cos^2x}{cosx}  \\\\\sf:\implies \underset{\blue{\sf Required\ Derivative}}{\underbrace{\boxed{\pink{\frak{ \dfrac{dy}{dx} = -4sinx + 10sec^2x + 8cosx }}}}}

Attachments:
Similar questions