Math, asked by abtin4564, 1 year ago

d/dx [㏑(1-x)] =?

.......................................................................................................

Answers

Answered by Anonymous
4
Hey dear ☺️


Here your answer

⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️


d/dx [ln(1-x)]


Here we apply this formula

d/dx(ln x) = 1/x


 \frac{d}{dx} ln(1 - x) \\  \\  =  \frac{1}{1 - x}  \times  \frac{d}{dx}(1 - x) \\  \\  \\  =  \frac{1}{1 - x}  \times ( - x) \\  \\  \\  =  \frac{ - x}{1 - x}  \\  \\  \\  \\  \\ hope \: it \: helpful


Answered by Anonymous
18
\textbf{Answer}

 \frac{d}{dx}   ln(1 - x)   =  \frac{1}{x - 1}


\textbf{Topic}

Calculs -> differentiating logarithmic base questions


\textbf{Step-by-step solution}



\textbf{Explanation}


The simplest one is using logarithmic derivative


 \frac{d}{dx}   ln(x)   =  \frac{1}{x}


\textbf{Using,Chain Rule}


Let

y =  \frac{d}{dx}  ln(1 - x)


 \frac{d}{dx}y  =  \frac{d}{dx}    ln(1 - x)

 \frac{d}{dx} y =   \frac{1}{1 -  x}  \frac{d}{dx}(1 - x)

 \frac{d}{dx}  y=(  \frac{1}{1 - x} )(  - 1)

because

 \frac{d}{dx}(  -  x ) =  - 1


 \frac{d}{dx} y =  -  \frac{1}{1 - x}


 \frac{d}{dx} y =  \frac{1}{x - 1}

Similar questions