Math, asked by sumitgupt251, 1 month ago

d\dx(1+x²+x⁴)\(1+x+x²)​

Attachments:

Answers

Answered by TheFighter123
0

{\tt{\underline{Given:-}}}

\bullet \bf \dfrac{d}{dx}\bigg(\dfrac{1+x^2+x^4}{1+x+x^2}\bigg)=ax+b

{\tt{\underline{Need\;to\;find:-}}}

The respective values of a and b

{\tt{\underline{Answer:-}}}

\bullet \tt\dfrac{d}{dx}\bigg(\dfrac{1+x^2+x^4}{1+x+x^2}\bigg)

\tt \dfrac{d}{dx}\bigg(\dfrac{1+2x^2+x^4-x^2}{1+x+x^2}\bigg)=ax+b

\tt\dfrac{d}{dx}\bigg(\dfrac{(1+x^2)^2 - x^2}{1+x+x^2}\bigg)=ax+b

\tt\dfrac{d}{dx}\bigg(\dfrac{(1+x^2+x)(1+x^2-x)}{1+x+x^2}\bigg)=ax+b

\tt\dfrac{d}{dx}\bigg(\dfrac{\cancel{(1+x^2+x)}+(1+x^2-x)}{\cancel{(1+x^2+x)}}\bigg)=ax+b

\tt\dfrac{d}{dx}\bigg(1+x^2+x\bigg)=ax+b

\tt 2x-1=ax+b

Here, we are having the same form of the equation as the given L.H.S

\bf\underline{ 2=a\;\;\;\;\& \;\;\;\; -1=b}

Please click on the brainliest option!

Similar questions