Math, asked by suryanshmishra130, 3 months ago

d/dx (2x-3)²
differentiate the following function

Answers

Answered by Anonymous
0

Step-by-step explanation:

this question's answer is 4(2x-3)

Attachments:
Answered by ITZBFF
38

 \mathrm \red{Given : } \\

 \mathrm{f(x) \:  =  \:  {(2x - 3)}^{2} } \\

  \mathrm{By  \: differentiating : } \\  \\  \mathrm{ \frac{d}{dx}f(x) \:  =  \:  \frac{d}{dx} \bigg( {(2x - 3).(2x - 3)} \bigg)  } \\  \\

 \mathrm{f'(x) \:  =  \:   \frac{d}{dx}  \bigg( {(2x)}^{2}  - 2(2x)(3) +  {3}^{2} \bigg) } \\  \\

 \mathrm{f'(x) \:  =  \frac{d}{dx}  \bigg( \: 4 {x}^{2} - 12x + 9  \bigg)} \\  \\

 \mathrm{f'(x) \:  =  \:  \frac{d}{dx} (4 {x}^{2}) \:  -  \frac{d}{dx}(12x) +  \frac{d}{dx}(9)   } \\  \\

\mathrm{f'(x) \:  =  \:  8x - 12  }

 \boxed{ \boxed{ \mathsf \red{Formulas \:  used : }}} \\  \\  \mathsf{ \frac{d}{dx}( {x}^{n}) \:  =  \: n. {x}^{n - 1}   } \\  \\

\mathsf{ \frac{d}{dx} (u + v + z) \:  =  \:  \frac{d}{dx} (u) + \frac{d}{dx} (v) + \frac{d}{dx} (z)} \\

Similar questions