Math, asked by sunpreetkaurrathi, 3 days ago

d/dx (3x)² + sinx find derivative​

Answers

Answered by atharvarangdale
0

Step-by-step explanation:

3x²d²y/dx² + 6xdy/DX + cosx

Answered by anindyaadhikari13
5

Solution:

Given Function:

\rm\longrightarrow f(x)=3x^{2}+\sin(x)

Differentiating both sides wrt x, we get:

\rm\longrightarrow f'(x)=\dfrac{d}{dx}[3x^{2}+\sin(x)]

\rm\longrightarrow f'(x)=\dfrac{d}{dx}[3x^{2}]+\dfrac{d}{dx}[\sin(x)]

We know that:

\bigstar\ \underline{\boxed{\rm\dfrac{d}{dx}(C\times f)=C\times\dfrac{d}{dx}(f)}}

\bigstar\ \underline{\boxed{\rm\dfrac{d}{dx}(x^{n})=nx^{n-1}}}

\bigstar\ \underline{\boxed{\rm\dfrac{d}{dx}[\sin(x)]=\cos(x)}}

Using this result, we get:

\rm\longrightarrow f'(x)=3\dfrac{d}{dx}[x^{2}]+\dfrac{d}{dx}[\sin(x)]

\rm\longrightarrow f'(x)=3\times 2x^{2-1}+\cos(x)

\rm\longrightarrow f'(x)=6x+\cos(x)

Which is our required answer.

Learn More:

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}

Similar questions