d/dx (a +bsinx/a-bsinx)
Answers
Answered by
10
=d/dx(a+bsinx÷a-bsinx)
By using Quotient rule;
= (a-bsinx)(0+bcosx)- (a+bsinx)(0-bcosx)
= (a-bsinx)(bcosx)- (a+bsinx)(bcosx)
= (bcosx)[a-bsinx+a+bsinx]
=2abcosx.
hence found
THANK YOU!
PLEASE MARK AS BRAINLIEST..
By using Quotient rule;
= (a-bsinx)(0+bcosx)- (a+bsinx)(0-bcosx)
= (a-bsinx)(bcosx)- (a+bsinx)(bcosx)
= (bcosx)[a-bsinx+a+bsinx]
=2abcosx.
hence found
THANK YOU!
PLEASE MARK AS BRAINLIEST..
Answered by
2
Given :
f(x) = a + bsinx/a - bsinx
To find :
d (a + bsinx/a - bsinx)/ dx
Solution :
Let u = a + bsinx and v = a - bsinx
• Using quotient rule for differentiating above function
Given by,
d f(x) /dx = u'×v - v'×u / u^2
d f(x) /dx = [d(a + bsinx)/dx]×(a - bsinx) - [d(a - bsinx)/dx]×(a + bsinx) / (a - bsinx)^2
= bcosx(a - bsinx) - bcosx(a + bsinx) / (a - bsinx)^2
= abcosx - b^2cosx*sinx - abcosx - b^2cosx*sinx / (a - bsinx)^2
= -b^2cosx*sinx / (a - bsinx)^2
Hence, final answer is
d(a +bsinx/a-bsinx) / dx = -b^2cosx*sinx / (a - bsinx)^2
Similar questions