Math, asked by razu335384, 4 months ago

d/dx (e^sin2x) diferention dy/dx

Answers

Answered by QueenOfImposter
0

GIVEN :-

 \\  \sf \: a = 2 +  \sqrt{3}  \\  \\

TO FIND :-

 \\  \sf \: a -  \dfrac{1}{a}  \\  \\

SOLUTION :-

We have,

 \\  \sf \: a = 2 +  \sqrt{3}  \\

Taking reciprocal,

 \\  \sf  \:  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \\

Rationalising the denominator,

Rationalising factor is 2-√3.

 \\

So, multiplying numerator and denominator by 2-√3,

 \\  \implies \sf \:  \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ \implies  \sf \:  \dfrac{1}{a}  =  \dfrac{(2 -  \sqrt{3})(2 - \sqrt{3}) }{(2 +  \sqrt{3} )(2 -  \sqrt{3}) }  \\ \\

For numerator,

★ (a-b)(a-b) = a² + b² - 2ab

a = 2

b = √3

For denominator,

★ (a+b)(a-b) = a² - b²

a = 2

b = -√3

Putting values,

 \\  \implies \sf \:  \dfrac{1}{a}  =  \dfrac{ {2}^{2} - 2(2)( \sqrt{3}) + {( -  \sqrt{3}) }^{2}}{ {2}^{2} -  {( -  \sqrt{3}) }^{2}  }  \\  \\  \implies \sf \:  \dfrac{1}{a}  =  \dfrac{4 -  4 \sqrt{3} + 3 }{4 - 3}  \\  \\ \implies  \sf \:   \boxed{ \sf\dfrac{1}{a}  = 7 - 4 \sqrt{3} } \\  \\

We have ,

 \\  \bullet \:  \:  \:  \:  \:  \:  \sf \: a = 2 +  \sqrt{3}  \\  \\  \bullet \:  \:  \:  \:  \:  \sf \:  \dfrac{1}{a}  = 7 - 4 \sqrt{3}  \\  \\

So,

 \\  \implies \sf \: a -  \dfrac{1}{a}  = 2 +  {\sqrt{3}}  - 7 + { 4 \sqrt{3} } \\   \\ \\ \implies  \underbrace{\boxed{  \sf \: a -  \dfrac{1}{a }  = 8}}

Answered by adityaaryaas
1

Answer:

Please find the attached image.

Attachments:
Similar questions