Physics, asked by JoyalJoseph13005, 10 months ago

d/dx(e^x^3)
help me out.

Answers

Answered by HariyaniDev
1

Answer:

\frac{d}{dx}(  {e}^{ {x}^{3}})= 3 {e}^{ {x}^{3} } {x}^{2}

Explanation:

Here, y=e^{x^{3}} \\ Let, x^3 =u ..........(1)\\ \therefore y= e^u \\ Now, we  \: know  \: that,\\ \frac{d(e^x)}{dx}=e^x \\ \therefore  \frac{dy}{du}  =  {e}^{u} ..........(2) \\ Now, In Eq(1),\\ x^3=u \\ \therefore \frac{du}{dx}=3x^{3 - 1} \\  \therefore  \frac{du}{dx}  = 3 {x}^{2} ..........(3) \\ Now, Multiplying  \: Eq(2)  \: by  \: Eq(3), \\ \therefore  \frac{dy}{du}  \times  \frac{du}{dx} =  {e}^{u}  \times 3 {x}^{2}  \\ Now, putting  \: value  \: of \:  x  \: from \:  Eq(1), \\  \therefore \frac{dy}{dx}  = 3 {e}^{ {x}^{3} } {x}^{2}

Similar questions