D\dx(e*x+logx)\sin3x
Answers
Answered by
2
Let t= (e^x + log x) / (sin3x)
dt / dx = d [ (e^x + log x) / (sin3x) ] / dx
Using the quotient rule, i.e (u/v)' = (vu' - v'u) / v^2
dt / dx = [ sin3x (e^x + 1/x) - (e^x + logx).3.cos3x ] / sin^2 (3x)
= [ sin3x (e^x + 1/x) - 3(e^x + logx).cos3x ] / sin^2 (3x)
Note:
d(logx)dx = 1/x
d(e^x)/dx = e^x
Similar questions