Physics, asked by sonalidd1974, 10 months ago

d/dx(e^x.x^7)=?plzz give solution fast​

Answers

Answered by nirman95
3

Let the given function be f(x) .

 \therefore \:  \: y = f(x)

 =  > y =  {e}^{x}  \times  {x}^{7}

 =  >  \dfrac{dy}{dx}  =  \dfrac{d \bigg \{ {e}^{x}  \times  {x}^{7} \bigg \} }{dx}

Applying Product Rule Of Differentiation :

 =  >  \dfrac{dy}{dx}  =  {x}^{7}  \times  \dfrac{d \{ {e}^{x}  \}}{dx}  +  {e}^{x}  \times  \dfrac{d \{ {x}^{7}  \}}{dx}

 =  >  \dfrac{dy}{dx}  =  {x}^{7}  \times  {e}^{x}   +  {e}^{x}  \times  (6 {x}^{6} )

Taking common terms :

 =  >  \dfrac{dy}{dx}  =  {e}^{x}  {x}^{6} \bigg \{x + 6 \bigg \}

So final answer is :

 \boxed{ \green{ \bold{\huge{ \dfrac{dy}{dx}  =  {e}^{x}  {x}^{6} \bigg \{x + 6 \bigg \}}}}}

Basic rules for Differentiation applied here :

1) \:  \: f(x) = u \times v

 =  >  \dfrac{d \{f(x) \}}{dx}  = u \dfrac{dv}{dx}  + v \dfrac{du}{dx}

2) \:  \: f(x) =  {x}^{n}

 =  >  \dfrac{d \{f(x) \}}{dx}  = n {x}^{n - 1}

Answered by Anonymous
0

Let ,

 \sf y =  {(e)}^{x}  \times  {(x)}^{7}

Differentiating with respect to x , we get

 \sf \mapsto \frac{d(y)}{dx}  =  \frac{d({(e)}^{x}  \times  {(x)}^{7} )}{dx}  \\  \\  \sf \mapsto  \frac{d(y)}{dx}  =  {(e)}^{x}  \times  \frac{d {(x)}^{7} }{dx}  +  {(x)}^{7}  \times  \frac{d {(e)}^{x} }{dx}  \:  \:  \:  \:  \{  \because product \: rule\} \\  \\  \sf \mapsto  \frac{d(y)}{dx}  =  {(e)}^{x}  \times 7 {(x)}^{6}  +  {(x)}^{7}  \times  {(e)}^{x}   \:  \:  \:  \{ \because  \frac{d {(e)}^{x} }{x}  =  {(e)}^{x}  \}\\  \\ \sf \mapsto  \frac{d(y)}{dx}  =7 {(x)}^{6}  {(e)}^{x}  +  {(x)}^{7} {(e)}^{x}  \\  \\ \sf \mapsto  \frac{d(y)}{dx}  =  {(e)}^{x}  {(x)}^{6} \bigg (7 + x\bigg)

 \sf \therefore{  \underline{the \: value \: of  \:  \frac{d(y)}{dx}   \: is  \:   {(e)}^{x}  {(x)}^{6} \bigg (7 + x\bigg)}}

Similar questions