Math, asked by radhikaparakhe114, 6 days ago

d/dx[log (tan4-3x)]= ?​

Answers

Answered by jiyugadhiya
0

Answer:

SOLUTION

GIVEN

y = log [ tan ( 4 - 3x )]

TO DETERMINE

\displaystyle \sf{ \frac{dy}{dx} }

dx

dy

EVALUATION

Here it is given that

y = log [ tan ( 4 - 3x )]

Now Differentiating both sides with respect to x we get

\displaystyle \sf{ \frac{dy}{dx} = \frac{d}{dx} \log \tan(4 - 3x)}

dx

dy

=

dx

d

logtan(4−3x)

\displaystyle \sf{ \implies \frac{dy}{dx} = \frac{1}{\tan(4 - 3x)} \frac{d}{dx} \tan(4 - 3x)}⟹

dx

dy

=

tan(4−3x)

1

dx

d

tan(4−3x)

\displaystyle \sf{ \implies \frac{dy}{dx} = \frac{1}{\tan(4 - 3x)} \times { \sec}^{2} (4 - 3x) \times \frac{d}{dx} (4 - 3x)}⟹

dx

dy

=

tan(4−3x)

1

×sec

2

(4−3x)×

dx

d

(4−3x)

\displaystyle \sf{ \implies \frac{dy}{dx} = \frac{1}{\tan(4 - 3x)} \times { \sec}^{2} (4 - 3x) \times - 3}⟹

dx

dy

=

tan(4−3x)

1

×sec

2

(4−3x)×−3

\displaystyle \sf{ \implies \frac{dy}{dx} = - 3 \times \frac{{ \sec}^{2} (4 - 3x)}{\tan(4 - 3x)} }⟹

dx

dy

=−3×

tan(4−3x)

sec

2

(4−3x)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

Step-by-step explanation:

I hope you got your perfect answer thank you so make me as brainliest

Similar questions