Math, asked by nikhilkumar7493, 11 months ago

D/dx log (x+√x^2+a^2)-log (-x+√x^2+a^2) = ?

Answers

Answered by rishu6845
8

Answer:

 \dfrac{2}{ \sqrt{ \: ( {x}^{2} \:  +  {a}^{2} \: )  } }

Step-by-step explanation:

To find ---->

derivative \: of \:  \\ log \: ( \: x \:  +  \:  \sqrt{ {x}^{2} \:  +  \:  {a}^{2} \:   } \: ) \:  -  \: log \: ( - x \:  +  \sqrt{ {x}^{2} \:  +  \:  {a}^{2}  } \: )

Concept used ---->

1)

 \dfrac{d}{dx} \: ( \: logx \: )  =  \dfrac{1}{x}

2)

 \dfrac{d}{dx}  \: ( \:  \sqrt{x}  \: ) =  \:  \dfrac{1}{2 \:  \sqrt{x} }

3)

 \dfrac{ {d} }{dx}  \: ( \:  {x}^{2} \: ) \:  = 2x

4)

 \dfrac{d}{dx}  \: ( \: constant \: ) =  \: 0

Solution----> Let,

y \:  = log(x +  \sqrt{ {x}^{2} +  {a}^{2}  }  \:  ) - log( - x +  \sqrt{ {x}^{2}  +  {a}^{2}  } \: )

differentiating \: with \: respect \: to \: x \: we \: get

  \dfrac{dy}{dx} =  \dfrac{d}{dx}log(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \: ) -  \dfrac{d}{dx}log( - x +  \sqrt{ {x}^{2} +  {a}^{2}  } \: )

 =  \dfrac{ \:  \dfrac{d}{dx}(x +  \sqrt{ {x}^{2}  +  {a}^{2} } \: )  }{x +  \sqrt{ {x}^{2} +  {a}^{2}  } } -  \dfrac{ \dfrac{d}{dx}( - x +  \sqrt{ {x}^{2} +  {a}^{2}  } \: )  }{ - x +  \sqrt{ {x}^{2}  +  {a}^{2} } }

 =   \dfrac{1 +  \dfrac{1}{2 \sqrt{ {x}^{2} +  {a}^{2}  } } \:  \dfrac{d}{dx} \: ( {x}^{2} +  {a \: }^{2} )   }{x +  \sqrt{ {x}^{2} +  {a}^{2}  } }  -  \dfrac{ - 1 +  \dfrac{1}{2 \sqrt{ {x}^{2} +  {a}^{2}  } } \dfrac{d}{dx}( {x}^{2} +  {a}^{2})    }{( - x +  \sqrt{ {x}^{2} +  {a}^{2}  }) }

 =  \dfrac{1 +  \dfrac{2x}{2 \sqrt{ {x}^{2} +  {a}^{2}  } } }{x +  \sqrt{ {x}^{2} +  {a}^{2}  } }  -  \dfrac{ - 1 +  \dfrac{2x}{2 \sqrt{ {x}^{2} +  {a}^{2}  } } }{ - x +  \sqrt{ {x}^{2} +  {a}^{2}  } }

 =  \dfrac{ \dfrac{ \sqrt{ {x}^{2} +  {a}^{2}  } + x }{ \sqrt{ {x}^{2} +  {a}^{2}  } } }{x +  \sqrt{ {x}^{2} +  {a}^{2}  } }  -   \dfrac{ \dfrac{ -  \sqrt{ {x}^{2} +  {a}^{2}  } + x }{ \sqrt{ {x}^{2} +  {a}^{2}  } } }{ - (x -  \sqrt{ {x}^{2}  +  {a}^{2} }) }

 =  \dfrac{1}{ \sqrt{ {x}^{2} +  {a}^{2}  } }  +  \dfrac{1}{ \sqrt{ {x}^{2} +  {a}^{2}  } }

 =  \dfrac{2}{ \sqrt{ {x}^{2} +  {a}^{2}  } }

Answered by Anonymous
0

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions