Physics, asked by varshagoud370, 6 months ago

d/dx multiplied by x to the power n=n.x to the power n-1


prove the equation.​

Answers

Answered by shadowsabers03
9

We're asked to prove,

\longrightarrow \dfrac{d}{dx}(x^n)=nx^{n-1}\quad\forall n\in\mathbb{R}

We're proving with the first principle of derivatives.

First principle of derivatives states that, the first derivative of a real valued function is given by,

\displaystyle\large\text{$\longrightarrow \dfrac{d}{dx}[f(x)]=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}$}

According to the question, let,

\longrightarrow f(x)=x^n

so that,

\longrightarrow f(x+h)=(x+h)^n

By first principle,

\displaystyle\longrightarrow \dfrac{d}{dx}[f(x)]=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}

\displaystyle\longrightarrow \dfrac{d}{dx}(x^n)=\lim_{h\to0}\dfrac{(x+h)^n-x^n}{h}\quad\quad\dots(1)

We are familiar with binomial theorem,

\displaystyle\longrightarrow(a+b)^n=\sum_{r=0}^n\,^n\!C_r\ a^{n-r}\ b^r

Taking a=x and b=h,

\displaystyle\longrightarrow(x+h)^n=\sum_{r=0}^n\,^n\!C_r\ x^{n-r}\ h^r

We can take the first term out of the sum as,

\displaystyle\longrightarrow(x+h)^n=\,(^nC_0\ x^{n-0}\ h^0)+\sum_{r=1}^n\,^n\!C_r\ x^{n-r}\ h^r

\displaystyle\longrightarrow(x+h)^n=x^n+\sum_{r=1}^n\,^n\!C_r\ x^{n-r+1-1}\ h^{r-1+1}

\displaystyle\longrightarrow(x+h)^n-x^n=\sum_{r=1}^n\,^n\!C_r\ x^{n-r+1}\cdot x^{-1}\cdot h^{r-1}\cdot h

Taking hx^{-1} out of the sum,

\displaystyle\longrightarrow(x+h)^n-x^n=hx^{-1}\sum_{r=1}^n\,^n\!C_r\ x^{n-(r-1)}\,h^{r-1}

\displaystyle\longrightarrow\dfrac{(x+h)^n-x^n}{h}=x^{-1}\sum_{r=1}^n\,^n\!C_r\ x^{n-(r-1)}\,h^{r-1}

Then (1) becomes,

\displaystyle\longrightarrow\dfrac{d}{dx}(x^n)=\lim_{h\to0}x^{-1}\sum_{r=1}^n\,^n\!C_r\ x^{n-(r-1)}\,h^{r-1}

Taking the first term out of the sum,

\displaystyle\longrightarrow\dfrac{d}{dx}(x^n)=x^{-1}\cdot\lim_{h\to0}\left[\,^n\!C_1\ x^{n-(1-1)}\,h^{1-1}+\sum_{r=2}^n\,^n\!C_r\ x^{n-(r-1)}\,h^{r-1}\right]

\displaystyle\longrightarrow\dfrac{d}{dx}(x^n)=x^{-1}\cdot\left[\lim_{h\to0}nx^{n}+\lim_{h\to0}\sum_{r=2}^n\,^n\!C_r\ x^{n-(r-1)}\,h^{r-1}\right]

\displaystyle\longrightarrow\dfrac{d}{dx}(x^n)=x^{-1}\cdot\left[nx^{n}+0\right]

\displaystyle\longrightarrow\dfrac{d}{dx}(x^n)=x^{-1}\cdot nx^n

\displaystyle\longrightarrow\underline{\underline{\dfrac{d}{dx}(x^n)=nx^{n-1}}}

Hence Proved!

Similar questions