Math, asked by shubhamarora7197, 6 months ago

D/DX of root of cot square of x

Answers

Answered by Asterinn
2

 \implies \dfrac{d( {cot}^{2}x) }{dx}

\implies \dfrac{d( {cot}^{2}x) }{dx}  = 2cot \: x \times \dfrac{d( {cot}x) }{dx} \times \dfrac{dx }{dx}

\implies \dfrac{d( {cot}^{2}x) }{dx}  = 2cot \: x \times ( -  { \csc}^{2} x )\times 1

\implies \dfrac{d( {cot}^{2}x) }{dx}  =  - 2cot  x \times{\csc}^{2} x

\implies \dfrac{d( {cot}^{2}x) }{dx}  =  - 2 \: cot  x  \: {\csc}^{2} x

Answer :

- 2 \: cot  x  \: {\csc}^{2} x

_____________________

Learn more :

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

____________________

Similar questions