d/dx of sin x-x cos x/x sin x + cos x
Answers
Answered by
4
Answer:
hope it's helpful to you!
Step-by-step explanation:
Let f(x)=
xsinx+cosx
sinx−xcosx
which is of the form
v
u
f
′
(x)=
v
2
u
′
v−v
′
u
=
(xsinx+cosx)
2
(xsinx+cosx)
dx
d
(sinx−xcosx)−(sinx−xcosx)
dx
d
(xsinx+cosx)
=
(xsinx+cosx)
2
(xsinx+cosx)(cosx−cosx+xsinx)−(sinx−xcosx)(xcosx+sinx−sinx)
=
(xsinx+cosx)
2
(xsinx+cosx)(xsinx)−(sinx−xcosx)(xcosx)
=
(xsinx+cosx)
2
x
2
sin
2
x+xsinxcosx−xsinxcosx+x
2
cos
2
x
=
(xsinx+cosx)
2
x
2
sin
2
x+x
2
cos
2
x
=
(xsinx+cosx)
2
x
2
(sin
2
x+cos
2
x)
=
(xsinx+cosx)
2
x
2
since sin
2
x+cos
2
x=1
hope it's helpful to you!
Answered by
10
Answer:
x=1
Step-by-step explanation:
hope this answer will help you
Similar questions