Math, asked by NakulMangal3387, 10 months ago

D/dx( secsqrt x -tansqrt x)=

Answers

Answered by Anonymous
0

Answer:

 \frac{d}{dx} ( \sec {}^{2} x) -  \frac{d}{dx} ( \tan {}^{2} x) \\ 2 \sec {}^{2} x \tan \: x - 2 \tan \: x \sec {}^{2} x  = 0

hope it helps you

plZ Mark me brainlist ✌️✌️✌️✌️

Answered by revaliyavirender
1

Answer:

The derivative of given function \frac{d}{dx}(sec^2x-tan^2x)=0\\

Step-by-step explanation:

Here given function f(x) is  (sec^2x-tan^2x)\\.

On differentiate given function with respect to x.

                 \frac{d}{dx}f(x) =\frac{d}{dx}(sec^2x-tan^2x)\\

\frac{d}{dx}(sec^2x-tan^2x)=\frac{d}{dx} sec^2x-\frac{d}{dx} tan^2x

                             =2secx\frac{d}{dx}secx-2tanx\frac{d}{dx}tanx

                             =2secxtanxsecx-2tanxsec^2x\\=2sec^2xtanx-2sec^2xtanx\\=0

But As we know the identity

                              1+tan^2x = sec^2x\\sec^2x-tan^2x=1

Hence the given function is a constant function.

Therefore, the derivative of function f(x) is sec^2x-tan^2x\\ is zero.

Similar questions