Math, asked by siddhiwavhal, 2 months ago

d/dx sin^5 (underoot x)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: y \:  =  \:  {sin}^{5} \sqrt{x}

\rm :\longmapsto\:y =  {\bigg(sin \sqrt{x} \bigg) }^{5}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg(sin \sqrt{x} \bigg) }^{5}

\rm :\longmapsto\:\dfrac{dy}{dx} = 5 {\bigg(sin \sqrt{x} \bigg) }^{4} \dfrac{d}{dx} \:  sin\sqrt{x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = 5 {\bigg(sin \sqrt{x} \bigg) }^{4}  \:  cos\sqrt{x} \:  \dfrac{d}{dx} \sqrt{x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \dfrac{d}{dx}  \: sinx =  \: cosx \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = 5 {\bigg(sin \sqrt{x} \bigg) }^{4} \: cos \sqrt{x} \: \dfrac{1}{2 \sqrt{x} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \dfrac{d}{dx} \sqrt{x} \:  =  \: \dfrac{1}{2 \sqrt{x} } \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{5 {sin}^{4}  \sqrt{x}  \: cos \sqrt{x} }{2 \sqrt{x} }

Additional Information :-

\red{\rm :\longmapsto\:\dfrac{d}{dx}k = 0}

\red{\rm :\longmapsto\:\dfrac{d}{dx}x = 1}

\red{\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}secx =    \: secx \: tanx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}tanx =    \: sec ^{2} x \:}

\red{\rm :\longmapsto\:\dfrac{d}{dx}cotx =    -  \: cosec ^{2} x \:}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {e}^{x} =  {e}^{x}}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga}

Similar questions