Math, asked by shinojcs766, 1 year ago

d/dx (sin x + cos x / sin x - cos x )

Answers

Answered by shree333
2

Answer:

please mark it as brainiest answer for my effort

Attachments:
Answered by nilesh102
7

{ \bf{ \underline{ \red{ \underline{ \red{solution}}}}  :  - }}

Let,

{\dashrightarrow { \bf{ \purple { y \:  = \frac{sin \: x \:  +  \: cos \: x}{sin \: x \:  -  \: cos \: x}  }}}}

Rationlize denominator { by taking conjugate pair of denominator }

{\dashrightarrow { \bf{ \purple { y \:  = \frac{sin \: x \:  +  \: cos \: x}{sin \: x \:  -  \: cos \: x}  \times  \frac{sin \: x \:  +  \: cos \: x}{sin \: x \:  +  \: cos \: x}  }}}}

{\dashrightarrow { \bf{ \purple { y \:  = \frac{(sin \: x \:  +  \: cos \: x) \times (sin \: x \:  +  \: cos \: x) }{(sin \: x \:  -  \: cos \: x) \times (sin \: x \:  +  \: cos \: x) }    }}}}

{\dashrightarrow { \bf{ \purple { y \:  = \frac{ {sin}^{2}x +{  {sin \: x  \times cos \: x  + sin \: x  \times cos \: x }}+  {cos}^{2}x }{ {sin}^{2}x +{ {  \cancel{sin \: x  \times cos \: x   }- { \cancel{sin \: x  \times cos \: x }}} }-  {cos}^{2}x }    }}}}

{\dashrightarrow { \bf{ \purple { y \:  = \frac{ {sin}^{2}x +2(sin \: x  \times cos \: x )  +  {cos}^{2}x }{ {sin}^{2}x   -  {cos}^{2}x }    }}}}

{\dashrightarrow { \bf{ \purple { y \:  = \frac{ {sin}^{2}x +  {cos}^{2}x  + 2(sin \: x  \times cos \: x )  }{    {sin}^{2}x  -  {cos}^{2}x } }}}}

Formula: sin²x + cos²x = 1

{\dashrightarrow { \bf{ \purple { y \:  = \frac{1 + 2(sin \: x  \times cos \: x )  }{    {sin}^{2}x  -  {cos}^{2}x } }}}}

Formula : 2 ( sin x • cos x ) = sin 2x

{\dashrightarrow { \bf{ \purple { y \:  = \frac{ 1  \: + \: sin \: 2x}{    {sin}^{2} x -  {cos}^{2} x}     }}}}

{\dashrightarrow { \bf{ \purple { y \:  = \frac{ 1  \: + \: sin \: 2x}{    -  ({cos}^{2}x  -  {sin}^{2} x)}     }}}}

Formula : cos²x - sin²x = cos 2x

{\dashrightarrow { \bf{ \purple { y \:  = \frac{ 1  \: + \: sin \: 2x}{    -   \: cos \: 2x}     }}}}</p><p>

{\dashrightarrow { \bf{ \purple { y \:  = { -  \frac{1}{cos \: 2x} }    +  \frac{sin \:2 x}{cos \: 2x}   }}}}

{\dashrightarrow { \bf{ \purple { y \:  = {  -  \: sec \: 2x \:  +  \: tan \: 2x}}}}}</p><p>

Now,

{\dashrightarrow { \bf{ \purple {  \frac{dy }{dx}  \:  = {  -  \: sec \: 2x \:  +  \: tan \: 2x}}}}}</p><p>

{\dashrightarrow { \bf{ \purple {  \frac{dy }{dx}  \:  = {  -   \: 2 \: sec \:2 x  \times \: tan \: 2x + 2  \: {sec}^{2} \: 2 x}}}}}</p><p>

{\dashrightarrow { \bf{ \purple {  \frac{dy }{dx}  \:  = {  -   \: 2 \: sec \:2x  ( \: tan \:2x +  {sec} \: 2 x)}}}}}</p><p>

Similar questions