Math, asked by malladiganesh4832, 8 months ago

D/dx(sinx+cosx) is equal to

Answers

Answered by Asterinn
2

 \implies \:   \dfrac{d( \sin \: x+  \cos \: x) }{dx}

\implies \:   \dfrac{d( \sin \: x) }{dx}  +   \dfrac{d(  \cos \: x) }{dx}

We know that :-

 \dfrac{d( \sin \: t) }{dt} = \cos \: t

 \dfrac{d(  \cos \: t)}{dt} =  - \sin \: t

\implies \:   {(  \cos \: x) }   +  {(   - \sin \: x) }

\implies \:   {\cos \: x}     - \sin \: x

Answer :

 \dfrac{d( \sin \: x+  \cos \: x) }{dx}  =  {\cos \: x}     - \sin \: x

__________________

Learn more :

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

Similar questions