Math, asked by adithyan1o, 9 months ago

d/dx((sinx+cosx)/(sinx-cosx))​

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let

y =  \frac{ \sin(x)  +  \cos(x) }{ \sin(x ) -  \cos(x)  }

 =  >  \frac{dy}{dx}  =  \frac{( \sin(x)  -  \cos(x) ). \frac{dy}{dx} ( \sin(x) +  \cos(x)) - ( \sin(x) +  \cos(x)). \frac{dy}{dx}  ( \sin(x)   -  \cos(x)) }{ {( \sin(x)  -  \cos(x) )}^{2} }

 \frac{dy}{dx}  =  \frac{  ( \sin(x)  -   \cos(x) )( \cos(x)   -  \sin(x))  - ( \sin(x)   +  \cos(x) )( \cos(x) +  \sin(x)  )}{ {( \sin(x)  -  \cos(x) ) }^{2} }

 \frac{dy}{dx} =   \frac{{( \sin(x) +  \cos(x) ) }^{2}   -  {( \sin(x)  -  \cos(x) )}^{2} }{{( \sin(x)  -  \cos(x) )}^{2}}

 \frac{dy}{dx}  =  \frac{4 \sin(x) \cos(x)  }{ \sin^{2} (x) +  \cos^{2} (x) - 2 \sin(x)  \cos(x)   }

 = \frac{dy}{dx} =  \frac{4 \sin(x) \cos(x)  }{1 - 2 \sin(x) \cos(x)  }

Hope this will help you

Similar questions