Math, asked by TbiaSupreme, 1 year ago

d/dx tan⁻¹x/1+tan⁻¹x w.r.t. tan⁻¹x=........,Select Proper option from the given options.
(a) 1/1+tan⁻¹x
(b) 1/(1+tan⁻¹x)²
(c) 1/1+x²
(d) -1/1+x²

Answers

Answered by abhi178
0
we have to find the value of \frac{d}{dx}\frac{tan^{-1}x}{1+tan^{-1}x} w.r.t to tan^{-1}x

first differentiate,  y=\frac{tan^{-1}x}{1+tan^{-1}x} w.r.t x ,


dy/dx = \frac{(1+tan^{-1}x)\frac{d(tan^{-1}x)}{dx}-tan^{-1}x\frac{d(1+tan^{-1}x)}{dx}}{(1+tan^{-1}x)^2}

=\frac{(1+tan^{-1}x)\frac{1}{1+x^2}-tan^{-1}x\frac{1}{1+x^2}}{(1+tan^{-1}x)^2}

=\frac{\frac{1}{1+x^2}(1+tan^{-1}x-tan^{-1}x)}{(1+tan^{-1}x)^2}

= \frac{1}{(1+x^2)(1+tan^{-1}x)^2}


now, Let z = tan^{-1}x

differentiate it with respect to x,

dz/dx = 1/(1 + x²)

now, we have to find dy/dz
dy/dz = dy/dx × dx/dz

= {dy/dx}/{dz/dx}

= 1/(1 + tan^-1x)²

hence, option (b) is correct.
Answered by hukam0685
0
Hello,

Solution:

let y = tan⁻¹x/1+tan⁻¹x

y =  \frac{ {tan}^{ - 1} x}{ 1+  {tan}^{ - 1} x}
add and subtract 1 in numerator

y =  \frac{ {tan}^{ - 1}x + 1 - 1 }{1 +  {tan}^{ - 1} x}   \\  \\ y =  \frac{1 +  {tan}^{ - 1}x }{1 +  {tan}^{ - 1} x}  -  \frac{1}{ 1+  {tan}^{ - 1} x}  \\  \\y  = 1 - \frac{1}{ 1+  {tan}^{ - 1} x} \\  \frac{dy}{dx}  = 0 -  \frac{(1 +  {tan}^{ - 1}x) \frac{d(1)}{dx}  - 1 \frac{d(1 +  {tan}^{ - 1}x) }{dx}  }{ {(1 +  {tan}^{ - 1}x) }^{2} }  \\  \frac{dy}{dx}  =  \frac{1}{(1 +  {x}^{2}) ( {1 +  {tan}^{ - 1}x) }^{2} }
let m = tan⁻¹x

 \frac{dm}{dx}  =  \frac{1}{1 +  {x}^{2} }  \\
Now to find

 \frac{dy}{dm}  =  \frac{ \frac{dy}{dx} }{ \frac{dm}{dx} }  = \frac{1}{(1 +  {x}^{2} )( {1 +  {tan}^{ - 1}x) }^{2} }  \times (1 +  {x}^{2} ) \\  \\  \frac{dy}{dm}  =  \frac{1}{ {(1 +  {tan}^{ - 1} x})^{2} }
Option b is correct.

Hope it helps you.
Similar questions