Physics, asked by fazaahkhan, 7 months ago

d/dx (x+1/x+log x+tanx)​

Answers

Answered by BrainlyTornado
7

ANSWER:

  • Derivative of x + 1/x + log x + Tan x = 1 - 1/x² + 1/x + sec² x.

GIVEN:

  • x + 1/x + log x + Tan x.

TO FIND:

  • Derivative of x + 1/x + log x + Tan x.

EXPLANATION:

Let y = x + 1/x + log x + Tan x

Let A = x, B = 1/x, C = log x and D = Tan x

y = A + B + C + D

Take A:

A = x

Differentiate w.r.t x

\sf \dfrac{dA}{dx} = \dfrac{d}{dx}x

\boxed{\bold{\large{\gray{\dfrac{d}{dx}x = 1}}}}

\sf \dfrac{dA}{dx} = 1

Take B:

B = 1/x

Differentiate w.r.t x

\sf \dfrac{dB}{dx} = \dfrac{d}{dx}x^{-1}

\boxed{\bold{\large{\gray{\dfrac{d}{dx} {x}^{n} =  n{x}^{n - 1} }}}}

\sf \dfrac{dB}{dx} = - 1 (x^{-1 - 1})

\sf \dfrac{dB}{dx} = - 1 (x^{-2})

\sf \dfrac{dB}{dx} = -  \dfrac{1} {x^{2}}

Take C:

C = log x

Differentiate w.r.t x

\sf \dfrac{dC}{dx} = \dfrac{d}{dx}log\ x

\boxed{\bold{\large{\gray{\dfrac{d}{dx}log\ x  = \dfrac{1}{x} }}}}

\sf \dfrac{dC}{dx} = \dfrac{1}{ x}

Take D:

D = Tan x

Differentiate w.r.t x

\sf \dfrac{dD}{dx} = \dfrac{d}{dx}Tan\ x

\boxed{\bold{\large{\gray{\dfrac{d}{dx}Tan\ x  =  {Sec}^{2} \ x  }}}}

\sf \dfrac{dD}{dx} =  {Sec}^{2} \ x

\sf We \ know\ that \ y = A + B + C + D

Differentiate w.r.t x

\sf  \dfrac{dy}{dx} =\dfrac{dA}{dx} +\dfrac{d B}{dx} + \dfrac{dC}{dx} + \dfrac{dD}{dx}

Substitute the respective values.

\sf  \dfrac{dy}{dx} =1 -  \dfrac{1} {x^{2}} +  \dfrac{1}{ x} + {Sec}^{2} \ x

Hence the derivative of x + 1/x + log x + Tan x = 1 - 1/x² + 1/x + sec² x.

Similar questions