Math, asked by vibhavasiddi28, 11 months ago

d/dx(x/2+1/2log|sinx+cosx|)
differentiate it​

Answers

Answered by brunoconti
4

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by Anonymous
16

\boxed{\textbf{\large{Step-by-step explanation:}}}

The given function is

y = \frac{x}{2}+\frac{1}{2} \times \ log |sinx + cosx |

Differentiate the function wrt x

\frac{dy}{dx} = \frac{d}{dx}(\frac{x}{2}+\frac{1}{2} \times \ log |sinx + cosx |)

=(\frac{1}{2}+\frac{1}{2} \times( \frac{1}{sinx + cosx}) (cosx - sinx))

= (\frac{1}{2}+\frac{cosx - sinx}{2(sinx + cosx)})

= \frac{2(sinx + cosx) + 2(cosx - sinx)}{4(sinx + cosx) }

 =\frac{2sinx + 2 cosx +2 cosx - 2sinx}{4 sinx + 4 cosx }

= \frac{ 4cosx}{4sinx + 4cosx}

\frac{dy}{dx}=\frac{cosx}{sinx + cosx}

__________________________________

⚫Derivatives of some standard composite functions :

1] y =[ f(x) ]^n

➡ dy / dx = n[f(x)]^(n - 1)x f'(x )

2] y = sin f (x)

➡dy / dx = cos f (x) x f' (x)

3] y = √ ( f (x ) )

➡dy / dx =( 1 / 2 √[ f(x)]) x f'(x )

4] y = k

➡ dy / dx = 0 [ Note : it is not a composite function ]

5] y = cos f (x )

➡ dy /dx = -sin f (x) x f'(x )

6] y = e^([f (x) ])

➡dy /dx = e^([f (x) ]) x f'(x)

7] y = a^[f(x)]

➡ dy /dx = a^[ f (x) ] x log a x f'(x)

8] y = log [f (x) ]

➡dy /dx =( 1 / f (x) ) x [f'(x) ]

__________________________________

Similar questions