Math, asked by tejeshdade522, 19 days ago

d/dx[x^2 secx]=
plz answer my question how answer the question I give them brainlist

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{d}{dx} ({x}^{2} secx) \\

We know,

\boxed{\rm{  \:\dfrac{d}{dx}u.v \:  =  \: u\dfrac{d}{dx}v \: +   \: v\dfrac{d}{dx}u \:  \: }} \\

So, using this result, we get

\rm \: =  \: {x}^{2}\dfrac{d}{dx}secx + secx\dfrac{d}{dx} {x}^{2}  \\

We know,

\boxed{\rm{  \:\dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \: }} \\

and

\boxed{\rm{  \:\dfrac{d}{dx}secx \:  =  \: secx \: tanx \:  \: }} \\

So, using these results, we get

\rm \: =  \: {x}^{2}(secx \: tanx) + secx \: (2x) \\

\rm \: =  \:x \: secx \: (x \: tanx \:  +  \: 2) \\

Hence,

\rm\implies \:\boxed{\rm{  \:\dfrac{d}{dx} ({x}^{2}secx)  =  \:x \: secx \: (x \: tanx \:  +  \: 2) \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
2

Step-by-step explanation:

  • Possible derivation:

 \sf \[ \dfrac{d}{d x}\left(x^{2} \sec (x)\right) \]

  • Use the product rule,

\tt \dfrac{d}{d x}(u v)=v \dfrac{d u}{d x}+u \dfrac{d v}{d x}, where \tt u=x^{2} and \tt v=\sec (x):

\sf =x^{2}\left(\dfrac{d}{d x}\sec (x)\right)+\left(\dfrac{d}{d x}\left(x^{2}\right)\right) \sec (x)

  • Using the chain rule,

\tt \dfrac{d}{d x}(\sec (x))=\dfrac{d \sec (u)}{d u} \dfrac{d u}{d x},where u=x and

\tt \dfrac{d}{d u}(\sec (u))=\sec (u)\tan (u):

\sf=\left(\dfrac{d}{d x}\left(x^{2}\right)\right) \sec (x)+ \boxed{ \sf\left(\dfrac{d}{d x}(x)\right) \sec (x) \tan (x)} x^{2}

  • The derivative of x is 1 :

 \sf\[ =\left(\dfrac{d}{d x}\left(x^{2}\right)\right) \sec (x)+ \boxed{1} \:  \:  x^{2} \sec (x) \tan (x) \]

  • Use the power rule, \tt \dfrac{d}{d x}\left(x^{n}\right)=n x^{n-1},
  • where n=2 .

\[ \begin{array}{l} \sf \dfrac{d}{d x}\left(x^{2}\right)= 2 x: \\ \\ \sf  = \boxed{ \sf2 x } \: \sec (x)+x^{2} \sec (x) \tan (x) \end{array} \]

  • Simplify the expression:

 \colorbox{powderblue}{ \boxed{ \begin{array}{l}   \underline{\underline{ \color{orange} \text{Answer: }}} \\  \\ & \color{red} \[ \sf =x \sec (x)(2+x \tan (x)) \] \end{array}}}

Similar questions