Math, asked by mythreya2246, 9 months ago

D, E and F are the points on sides BC, CA and AB respectively of ΔABC such that AD bisects ∠A, BE bisects ∠B and CF bisects ∠C . If AB = 5 cm, BC = 8 cm and CA = 4 cm, determine AF, CE and BD.

Answers

Answered by adventureisland
0

The values are \ {AF}=\frac{5}{3} \ {cm} , \ {CE}=\frac{32}{13} \ {cm} and \ {BD}=\frac{40}{9} \ {cm}

Explanation:

Given that ABC is a triangle.

Given that D,E and F are the points on sides BC, CA and AB such that AD bisects ∠A, BE bisects ∠B and CF bisects ∠C

Also given that AB = 5 cm, BC = 8 cm and CA = 4 cm

We need to determine the values of AF, CE and BD.

In ΔABC, CF bisects ∠C.

Since, the interior bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

Thus, we have,

\frac{A F}{F B}=\frac{A C}{B C}

Since, \ {FB}=\ {AB}-\ {AF} then \ {FB}=\ 5-\ {AF}

Substituting the values, we get,

\frac{A F}{5-A F}=\frac{4}{8}

\frac{A F}{5-A F}=\frac{1}{2}

Cross multiplying, we get,

 2 \mathrm{AF}=5-\mathrm{AF}

3 \ {AF}=5

  \ {AF}=\frac{5}{3} \ {cm}

Thus, the value of AF is \ {AF}=\frac{5}{3} \ {cm}

Since, BE bisects ∠B , we have,

\frac{A E}{E C}=\frac{A B}{B C}

Since, \ {AE}=\ {AC}-\ {CE} then \ {AE}=4-\ {CE}

Substituting the values, we have,

\frac{4-C E}{C E}=\frac{5}{8}

Cross multiplying, we get,

8(4-C E)=5 C E

32-8 C E=5 C E

            32=13 \ {CE}

          \ {CE}=\frac{32}{13} \ {cm}

Thus, the value of CE is \ {CE}=\frac{32}{13} \ {cm}

Since, AD bisects ∠A , we have,

\frac{B D}{D C}=\frac{A D}{A C}

Since, \ {DC}=\ {BC}-\ {BD}=8-\ {BD}

Substituting the values, we have,

\frac{B D}{8-B D}=\frac{5}{4}

Cross multiplying, we get,

4 \ {BD}=40-5 \ {BD}

9 \ {BD}=40

  \ {BD}=\frac{40}{9} \ {cm}

Thus, the value of BD is \ {BD}=\frac{40}{9} \ {cm}

Therefore, the values are \ {AF}=\frac{5}{3} \ {cm} , \ {CE}=\frac{32}{13} \ {cm} and \ {BD}=\frac{40}{9} \ {cm}

Learn more:

(1) D,E and F are the points on sites BC,CA and AB respectively of triangle ABC such that AD bisects angle A, and BE bisects angle B and CF bisect angle C . if AB = 5cm, BC = 8cm and CA = 4cm, determine AF,CE and BD.

brainly.in/question/5930678

(2) D , E and F are the points on sides BC , CA and AB respectively of △ABC . Such that AD bisects ∠A , BE bisects ∠B and CF bisects ∠C . If AB = 5cm , BC = 8cm and CA = 4cm , determine AF , CE and BD ...Draw the fig also

brainly.in/question/5173251

Attachments:
Answered by dk6060805
0

Answer is AF = \frac {5}{3}, CE = \frac {13}{32} & BD = \frac {40}{9}

Step-by-step explanation:

In ABC, CF bisects \angle C.

Opposite Sides of the triangle gets divides in a ratio having an angle being internally divided/bisected.

Therefore,

\frac {AF}{FB} = \frac {AC}{BC}

\frac {AF}{5-AF} = \frac {4}{8} [As, FB = AB-AF= 5-AF]

\frac {AF}{5-AF} = \frac {1}{2}

⇒ 2AF = 5-AF

⇒ 2AF +AF = 5

⇒ 3AF = 5

So, AF = \frac {5}{3} cm

Again, In ABC, BE bisects \angle B

So, \frac {AE}{EC} = \frac {AB}{BC}

\frac {4-CE}{CE} = \frac {5}{8} [As, AE = AC-CE=4-CE]

8(4-CE) =5 \times CE

32-8CE=5CE

⇒ 32 = 13CE

CE = \frac {13}{32} cm

Similarly,

\frac {BD}{DC}=\frac {AD}{AC}

\frac {BD}{8-BD} = \frac {5}{4} [DC=BC-BD=8-BD]

4BD=40-5BD

⇒ 9BD = 40

BD = \frac {40}{9} cm

Hence, AF = \frac {5}{3} cm, CE = \frac {13}{32} cm and BD = \frac {40}{9} cm

Similar questions