Physics, asked by siffatasif, 1 month ago

d. Equal or less than that of the bullet 39. If the mass of the body is made three times and the velocity becomes double then the kinetic energy will increase? 6 times 12 In b. 12 times a. tor (B) (iz)? C. 24 times 2 (2011) d. 18 times RELATION BETEEN K.E & MOMENTUM 4 A particle of mass m has momentum P, its​

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Explanation:

so \: we \: know \: that \\ kinetic \: energy \:   (K.E) =  \frac{1}{2} mv {}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \: (1) \\   \\ so \: but \: here \: it \: is \: given \: that \\ new \: mass \: of \: body \: (m1) =  3 .m \\ new \: velocity \: (v1) = 2.v \\  \\ so \: thus \: then \:  \\ new \: kinetic \: energy \: is \: K.E \: ' =  \frac{1}{2} m1.v1 {}^{2}  \\  \\  =  \frac{1}{2}  \times 3m \times (2v) {}^{2}  \\  \\  =  \frac{1}{2} \times 3m \times 4v {}^{2} \\  = 3m \times 2v {}^{2}  \\  = 6mv {}^{2}     \\  \\  K.E \: '= 6mv {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

so \: now \: dividing \: (1) \: and \: (2) \\ we \: get \\  \frac{K.E}{K.E \: '}  =  \frac{ \frac{mv {}^{2} }{2} }{6mv {}^{2} }  \\  \\  =  \frac{mv {}^{2} }{2 \times 6mv {}^{2} }  \\  \\  =  \frac{1}{12}  \\  \\ ie \: \:  12.K.E = K.E \: ' \\  \\ s o\: hence \: kinetic \: energy \: would \: get \: increased \:  \: 12.times

Similar questions