Math, asked by swarit44, 6 months ago

d) Examine whether the function () = sin(log(x + + D) is an odd or even function,​

Answers

Answered by Anonymous
1

Answer:

ok

Step-by-step explanation:

Well,as you know that,

sin( -x ) = - sin x  =>f(-X)=-f(x) =>odd function

csc ( -x ) = - csc x  ;similarly odd function

cos ( -x ) = cos x

; but this is an even function; f(-x)=f(x)

sec (-x ) = sec x

; even function

tan ( -x ) = - tan x

; odd function

tan ( -x ) = - cot x ;and odd function

So now lets move to the first question

1)f(x)=cotx+4cosecx+x

ANSWER:-  odd function,

f(-x)=-cotx-4cosecx-x => -(cotx+4cosecx+x)=> f(-x)=-f(x) ,so its an odd function.

2)similarly second you solve you will get even function.

f(x)=secx+4cosx+3x*2

for f(-x) you will get same function f(-x)=secx+4cosx+3x*2, so its an even funcion.

3)Now when you come to third you will get this is nor a odd niether even function. WHY? lets check

f(x)=sinx+cosx =>f(-x)= -sinx+cosx  which is neither as equal to -f(x) nor as f(x)

so you can call it neither odd nor even

                                HOPE IT HELPED:)

                                   THANKS

Answered by terabaap39
0

Answer:

⊕²³√∛·×÷±≈≤≠∞∨∧∉∈⇔,⇒≅≡≥αβΔπФω↑↓∵∴↔⊆⊃⊂∑∫⇆⇄⇅⇵←→⊇⊄⊅∀°∠∡⊥∪∩∅¬⊕║∦∝∞㏒㏑\\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} \leq \geq \neq \pi \alpha \beta \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx  \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]

Step-by-step explanation:

Similar questions