English, asked by sugargenius12, 3 months ago

d) If (3^2x-1 - 5) ÷ 2 = 11, then the value of
x is
i. 1
ii. 2
iii. 3
iv. 4​

Attachments:

Answers

Answered by OtakuSama
25

 \huge{ \underbrace{ \text{Correct \: question}}}

 \sf{If \: ( {3}^{2x - 1}  - 5) \div 2 = 11 \: then \:find \: the \: value \: of \:  \bold{x}}

 \huge{ \underbrace{ \text{ Answer}}}

Given Equation:-

 \sf{ \bold{ ({3}^{2x - 1}  - 5) \div 2 = 11}}

\\ \sf{ \implies{({3}^{2x - 1}  - 5) = 11 \times 2}}

 \\  \sf{ \implies{{3}^{2x - 1}   = 22 + 5}}

  \\ \sf{ \implies{3 {}^{2x - 1}  = 27}}

  \\   \sf{ \implies{ {3}^{2x - 1}  =  {3}^{3} }}

 \\  \sf{ \therefore{2x - 1 = 3}} \:  \:  \:  \boxed{ \sf{ \blue{ \because{ {a}^{x}  =  {a}^{y}   \rightarrow{ x = y}}}}}

 \\  \sf{ \implies{2x = 3 + 1}}

 \\  \sf{ \implies{2x = 4}}

  \\ \sf{ \implies{x =  \frac{4}{2} }}

 \\  \boxed{ \sf{ \implies{ \orange{x = 2}}}}

 \underline{ \boxed{ \rm{Hence, \:  option  \: \bold{  ii)2 \: } \: is \: correct. }}}

 \sf{ \underline{ \underline{ \pink{More \: Identities:-}}}}

\sf{ \rightarrow{ \bold{ {a}^{x}   +  {a}^{y}  }}}=  {a}^{xy}   \\  \\ \sf{ \rightarrow{ \bold{ {a}^{x}    \times   {a}^{y}  }}}=  {a}^{x + y}   \\  \\  \sf{  \rightarrow{\bold{ {a}^{x}     -    {a}^{y}  }}}=  {a}^{x  \div  y} \\  \\ \sf{  \rightarrow{\bold{ {a}^{x}      \div     {a}^{y}  }}}=  {a}^{x   -   y} \\  \\\sf{  \rightarrow{\bold{(  {a}^{x} ) {}^{y} }}} = a {}^{xy}  \\  \\ \sf{  \rightarrow{\bold{ {a}^{0} }}} = 1

Similar questions