Math, asked by vanshikagupta13, 1 year ago

d) If a and B are the zeroes of polynomial p(x) =
4x² – 5x - 1, then find the value of a² + B + aß?​

Answers

Answered by sanketj
0

 \alpha \: and \:  \beta   \: are \: roots \: of \\ 4 {x}^{2}  - 5x - 1  \\  \\  \alpha  =  \frac{  - b +  \sqrt{ {b}^{2} - 4ac } }{2a}   \\  \alpha =   \frac{  5 +  \sqrt{41} }{8}  \\  \beta  = \frac{  - b -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \beta  =  \frac{5 -  \sqrt{41} }{8}  \\  \\  =  >  { \alpha }^{2}  = \:  \frac{66 + 10 \sqrt{41} }{64}  =  \frac{33 + 5 \sqrt{41} }{32}  \\ =  >  { \beta }^{2}  =  \frac{66 - 10 \sqrt{41} }{64} =  \frac{33 - 5 \sqrt{41} }{32}   \\   =  >  \alpha  \beta  = ( \frac{5 +  \sqrt{41} }{8} )( \frac{5 -  \sqrt{41} }{8} ) \\  =  >  \alpha  \beta  =  - 2 \\  \\  \\ so \\  \\   \:  \:  \:  \:  \: { \alpha }^{2} +  { \beta }^{2} +   \alpha  \beta  \\  =    \frac{33 + 5 \sqrt{41} }{32}  +  \frac{33 - 5 \sqrt{41} }{32}  + ( - 2) \\  =  \frac{66}{32}  - 2 =  \frac{33}{16}  - 2 =  \frac{33 - 32}{16}  =  \frac{1}{16}

Hence,

 { \alpha }^{2}  +  { \beta }^{2} +  \alpha  \beta  =  \frac{1}{16}

Similar questions