Math, asked by keshrishalvi, 2 months ago

d) If X+Y=12 and XY 14.Find the value of X2+Y?.​

Answers

Answered by ghostrider0
0

Step-by-step explanation:

Given,x+y=12 and xy=14

Given,x+y=12 and xy=14 x+y=12

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get,

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y)

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y 2

Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y 2 =116

Similar questions