d) If X+Y=12 and XY 14.Find the value of X2+Y?.
Answers
Step-by-step explanation:
Given,x+y=12 and xy=14
Given,x+y=12 and xy=14 x+y=12
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get,
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y)
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y 2
Given,x+y=12 and xy=14 x+y=12 Squaring both sides, we get, (x+y) 2 =12 2 =>x 2 +y 2 +2xy=144=>x 2 +y 2 +2(14)=144=>x 2 +y 2 =144−28=>x 2 +y 2 =116