d is the midpoint of bc of triangle abc and e is the midpoint of ad. be produced meets ac at the point m . prove that be =3em
Answers
Answered by
9
Given : d is the midpoint of bc of triangle abc and e is the midpoint of ad. be produced meets ac at the point m
To find : Prove that be =3em
Solution:
Lets take a point F as mid point of AC
Now in Δ ADC
E & F are mid points of AD & AC
=> EF ║ DC
& Δ AEF ≈ ΔADC
AE/AD = EF/DC
=> 1/2 = EF/DC
=> EF/DC = 1/2
D is the mid point of BC
=> DC = BC/2
=> EF/ (BC/2) = 1/2
=> EF/BC = 1/4
now in Δ MEF & Δ MBC
EF ║ BC
=> ME/MB = EF/BC
=> ME/MB = 1/4
=> MB = 4ME
=> BE = MB - ME = 4ME - ME = 3ME
=> BE = 3 EM
QED
Hence proved
Learn more:
D is the mid-point of side BC of triangle ABC and E is the mid point ...
https://brainly.in/question/7482552
in the joint figure P is a point on the side BC of triangle ABC such ...
https://brainly.in/question/7799775
Similar questions