Math, asked by bhavyasharma7773, 11 months ago

D is the point on the side BC of triangle ABC such that angle ADC is equal to angle BAC. Prove that : CA:(square:) = CB×CD. ​

Answers

Answered by SarcasticL0ve
6

\bold{\underline{\underline{\rm{\red{GivEn:-}}}}}

  • ∆ABC where ∠ADC = ∠BAC

\bold{\underline{\underline{\rm{\blue{To\;ProvE:-}}}}}

  • CA² = CB×CD.

\bold{\underline{\underline{\rm{\purple{Proof:-}}}}}

★ In ∆ BAC and ∆ ADC

∠ACB = ∠ADC .... \sf{ \bigg[ ∵ Common\;Angle \bigg]}

∠BAC = ∠ADC ..... \sf{ \bigg[ ∵ Given \bigg]}

∴ Hence, By AA similarity criterion

∆ BAC ∼ ∆ADC

Therefore,

 \sf{ \dfrac{BA}{AD} = \dfrac{AC}{CD} = \dfrac{BC}{AC}}

 \sf{ \bigg[ ∵ Since \; two \; triangle\; are \; similar\; thier\; corresponding \;sides \;are \;proportional. \bigg]}

∴ Hence,

 \sf{ \dfrac{AC}{CD} = \dfrac{BC}{AC}}

★ Cross multiplication:-

AC × AC = BC × CD

AC² = BC × CD

Hence Proved!

__________________

Attachments:
Answered by InfiniteSoul
7

{\huge{\bold{\blue{\bigstar{\boxed{\bf{solution}}}}}}}

{\huge{\underline{\pink{GIVEN}}}}

  • ∠ADC = ∠BAC

{\huge{\underline{\pink{To \:prove}}}}

  •  CA^2 = CB \times CD

{\huge{\underline{\sf{\pink{Proof}}}}}

In ΔADC and ΔBAC

∠ADC = ∠BAC (Given)

∠ACD = ∠BCA (Common angle)

∴ ΔADC ~ ΔBAC (By AA similarity criterion)

  • when the triangles are similar their corresponding sides are in proportion

{\bold{\blue{\boxed{\bf\dfrac{BA}{AD}= \dfrac{AC}{CD} = \dfrac{BC}{AC}}}}}

therefore ;

\sf{\dfrac{AC}{CD}} = {\dfrac{BC}{AC}}

  • cross multiplication

 AC\times AC = CD\times BC

................Hence proved

_____________________❤

Attachments:
Similar questions