Math, asked by roshanshroff199, 6 months ago

(d) tan (45° -0)
coso - sino
coso + sine​

Answers

Answered by LaeeqAhmed
1

\color{red}{\huge{\underline{\underline{GIVEN\dag}}}}

  •  \tan(45 -θ)

\color{red}{\huge{\underline{\underline{SOLUTION\dag}}}}

We know that;

\color{blue}{ {\boxed{\tan(A - B)  =  \frac{ \tan(A)  -  \tan(B) }{1 +  \tan(A)  \tan(B) } }}}

→ \tan(45-θ)  =  \frac{ \tan(45) -  \tan(θ)  }{1 +  \tan(45) \tan(θ)  }

→ \tan(45-θ)  =  \frac{ 1 -  \tan(θ)  }{1 +  (1) \tan(θ)  }

→ \tan(45-θ)  =  \frac{ 1 -  \tan(θ)  }{1 +  \tan(θ)  }

→ \tan(45-θ)  =  \frac{ 1 -  \frac{\sinθ}{\cosθ}}{1 +  \frac{\sinθ}{\cosθ} }

\color{orange}{{\boxed{→ \tan(45-θ)  =  \frac{ \cosθ -  \sinθ}{\cos θ+  \sinθ }}}}

HOPE THAT HELPS!!

Similar questions