Math, asked by st6524437, 3 months ago

(d2-d)y=12ex+8sinx-2x​

Answers

Answered by masssheikh2
0

Step-by-step explanation:

hypnotherapy injury good the designatedehhgrvdgvxhd GHz see rs gggagsggsdysgzgzfzjvdhxvsggsdhdhdvdudhdhduagrxie

Answered by brokendreams
0

The solution to the given differential equation is y = A + B e^x + 12xe^x - 4 sinx + 4 cosx + x^{2} + 2x

Step-by-step explanation:

Given: Differential equation (D^{2} - D)y=12e^x+8sinx-2x

To Find: solution of the given differential equation

Solution:

  • Solution of the differential equation (D^{2} - D)y=12e^x+8sinx-2x

The complementary factor can be determined as,

\Rightarrow m^{2} - m = 0 \Rightarrow m (m - 1) = 0 \Rightarrow m = 0, 1

\Rightarrow y_{_{CF}} = A + B e^x

And, the particular integral is,

\Rightarrow y_{_{PI}} = \dfrac{1}{D^2 - D} (12e^x + 8 sinx - 2x)

\Rightarrow y_{_{PI}} = 12 \dfrac{1}{D^2 - D} e^x + 8 \dfrac{1}{D^2 - D}  sinx - 2\dfrac{1}{D^2 - D} x

Now, using the rule \frac{1}{f(D)}e^{ax} = x \frac{1}{f'(a)}e^{ax} \text{ for } f(a) = 0 in the first term, \frac{1}{f(D^2)}sinax =  \frac{1}{f(-a^2)}sin{ax} in the second term, and \frac{1}{f(D)}x^n =  [f(D)]^{-1} x^n in the third term of the above expression, we will get;

\Rightarrow y_{_{PI}} = 12 x e^x + 8 \dfrac{1}{(-1 - D)}  sinx + \dfrac{2}{D} [1-D]^{-1} x

\Rightarrow y_{_{PI}} = 12 x e^x - 8 \dfrac{1 - D}{(1 - D^2)}  sinx + \dfrac{2}{D} [1 + D + D^{2}] x

\Rightarrow y_{_{PI}} = 12 x e^x - 8 \dfrac{1 - D}{(1 - (-1))}  sinx + \dfrac{2}{D} [x + Dx + D^{2}x]

\Rightarrow y_{_{PI}} = 12 x e^x - 4 [sinx - D(sinx)]  + \dfrac{2}{D} [x + 1 + 0]

\Rightarrow y_{_{PI}} = 12 x e^x - 4 [sinx - cosx]  + 2 \Big[ \dfrac{x^{2} }{2} + x \Big]

\Rightarrow y_{_{PI}} = 12 x e^x - 4sinx + 4cosx + x^{2} + 2x

Hence, the solution to the given differential equation is y =  y_{_{CF}} + y_{_{PI}}\Rightarrow y = A + B e^x + 12xe^x - 4 sinx + 4 cosx + x^{2} + 2x

Similar questions