(D³-5D²+8D-4)y=2e^x +e^2x
Answers
Answer:
For the equation ( D^3 -5D^2 +8D -4)y = e^2x ,the characteristic equation is
m^3 -5m^2 +8m -4 = ( m-1)( m-2)^2 =0 , roots 1 , 2 ,2 .The complementary
function is yh = C1e^x + C2e^2x + C3xe^2x .
For the particular integral is appropriate the function yp = A(x^2)e^2x.
substituting in the equation gives A = 1/2 .Therefore the required solution is
y = C1e^x + C2e^2x + C3xe^2x +(1/2)(x^2)e^2x .
The required solution is y = C₁(e^x) + C₂(e^2x) + C₃(xe^2x) +(1/2)(x^2)e^2x
For the equation ( D^3 -5D^2 +8D -4)y = e^2x ,
the characteristic equation is,
m^3 -5m^2 +8m -4 = ( m-1)( m-2)^2 =0
⇒ Roots are 1 , 2 ,2
The complementary function C.F. = C₁(e^x) + C₂(e^2x) + C₃(xe^2x)
For the particular integral P.I. = A(x^2)e^2x.
substituting in the equation gives A = 1/2 .
Therefore the solution is
⇒ y = C₁(e^x) + C₂(e^2x) + C₃(xe^2x) +(1/2)(x^2)e^2x .
https://brainly.in/question/12803127
https://brainly.in/question/22496633
#SPJ2