Math, asked by hemalatha856, 1 month ago

d³y/dx³+2 d²y/dx²+dy/dx=e^-2x+sin 2x​

Answers

Answered by brokendreams
2

The general solution to the differential equation is

y = (A + Bx)e^{-x} + C + \dfrac{1}{50} [-25e^{-2x}-4sin2x+3cos2x]

Step-by-step explanation:

Given: Differential Equation \frac{d^{3}y }{dx^{3} } + 2 \frac{d^{2}y }{dx^{2} } + \frac{dy }{dx} = e^{-2x}+sin 2x

To Find: General solution of the given differential equation

Solution:

  • Finding the general solution of the given differential equation

The given differential equation can be written in the following way,

\Rightarrow (D^{3} + 2D^{2} + D)y =  e^{-2x}+sin 2x

\Rightarrow D ( D^{2} + 2D + 1)y =  e^{-2x}+sin 2x

where D=d/dx

To find the complementary factor, consider the above differential equation such that,

\Rightarrow m ( m^{2} + 2m + 1)= 0

\Rightarrow m ( m + 1 )^{2} = 0

\Rightarrow m = 0, -1, -1

Therefore, y_{CF} = Ce^{(0)x} + (A + Bx)e^{-x}

To find the particular integral, consider the above differential equation such that,

y_{PI} = \dfrac{1}{D ( D^{2} + 2D + 1)}  e^{-2x}+sin 2x

\Rightarrow y_{PI} = \dfrac{1}{D ( D^{2} + 2D + 1)}  e^{-2x}+ \dfrac{1}{D ( D^{2} + 2D + 1)} sin 2x

using the rules \frac{1}{f(D)}e^{ax} = \frac{1}{f(a)}e^{ax} and \frac{1}{f(D^2)}sinax = \frac{1}{f(-a^2)} sinax in the 1st and 2nd terms of the above equation respectively, we get,

\Rightarrow y_{PI} = \dfrac{1}{(-2) ( (-2)^{2} + 2(-2) + 1)}  e^{-2x}+ \dfrac{1}{D ( -(2)^{2} + 2D + 1)} sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x}+ \dfrac{1}{D ( 2D - 3)} sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x}+ \dfrac{1}{( 2D^2 - 3D)} sin 2x

again using the rule \frac{1}{f(D^2)}sinax = \frac{1}{f(-a^2)} sinax in the 2nd term, we get,

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x}+ \dfrac{1}{( 2(-(2)^2) - 3D)} sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \dfrac{1}{( 8 + 3D)} sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \Big[ \dfrac{1}{( 8 + 3D)} \times  \dfrac{( 8 - 3D)}{( 8 - 3D)} \Big] sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \dfrac{( 8 - 3D)}{( 64 - 9D^2)} sin 2x

again using the rule \frac{1}{f(D^2)}sinax = \frac{1}{f(-a^2)} sinax in the 2nd term, we get,

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \dfrac{( 8 - 3D)}{( 64 - 9(-4))} sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \dfrac{( 8 - 3D)}{100} sin 2x

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \dfrac{4}{50} sin 2x + \dfrac{3D(sin2x)}{100}

\Rightarrow y_{PI} = -\dfrac{1}{2}  e^{-2x} - \dfrac{4}{50} sin 2x + \dfrac{3(2cos2x)}{100}

\Rightarrow y_{PI} = \dfrac{1}{50} [- 25e^{-2x} - 4 sin 2x + 3cos2x]

Therefore, the general solution is y = y_{CF} + y_{PI} = (A + Bx)e^{-x} + C + \dfrac{1}{50} [-25e^{-2x}-4sin2x+3cos2x]

Hence, the general solution to the differential equation is

y = (A + Bx)e^{-x} + C + \dfrac{1}{50} [-25e^{-2x}-4sin2x+3cos2x]

Similar questions