Math, asked by kolagayathrisatyasri, 1 month ago

Da 4) 1;) It 3 sinA + 5 cos A =5, then show that S sinA - 3 cos A=+-3​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:3sinA + 5cosA = 5

On squaring both sides, we get

\rm :\longmapsto\:(3sinA + 5cosA) {}^{2}  = 25

We know,

 \red{\boxed{ \rm{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}}

So, using this identity, we get

\rm :\longmapsto\: {(3sinA)}^{2} +  {(5cosA)}^{2} + 2(3sinA)(5cosA) = 25

\rm :\longmapsto\: 9{sin}^{2}A +  25{cos}^{2}A + 30sinAcosA = 25

We know,

 \red{\boxed{ \rm{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we get

\rm :\longmapsto\: 9(1 - {cos}^{2}A) +  25(1 - {sin}^{2}A) + 30sinAcosA = 25

\rm :\longmapsto\: 9 - 9{cos}^{2}A +  25 - 2{sin}^{2}A + 30sinAcosA = 25

\rm :\longmapsto\:  - 9{cos}^{2}A - 25{sin}^{2}A + 30sinAcosA =  - 9

\rm :\longmapsto\:  9{cos}^{2}A +  25{sin}^{2}A  -  30sinAcosA =   9

\rm :\longmapsto\:  {(3cosA)}^{2}+  {(5sinA)}^{2}  -  30sinAcosA =   9

\rm :\longmapsto\:  {(3cosA)}^{2}+  {(5sinA)}^{2}  -  2(5sinA)(3cosA) =   9

\rm :\longmapsto\:(5sinA - 3cosA)^{2}  = 9

 \red{\bf\implies \: \red{\boxed{ \rm{ \: 5sinA - 3cosA =  \:  \pm \: 3 \:  \: }}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by XxitsmrseenuxX
23

Answer:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:3sinA + 5cosA = 5

On squaring both sides, we get

\rm :\longmapsto\:(3sinA + 5cosA) {}^{2}  = 25

We know,

 \red{\boxed{ \rm{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}}

So, using this identity, we get

\rm :\longmapsto\: {(3sinA)}^{2} +  {(5cosA)}^{2} + 2(3sinA)(5cosA) = 25

\rm :\longmapsto\: 9{sin}^{2}A +  25{cos}^{2}A + 30sinAcosA = 25

We know,

 \red{\boxed{ \rm{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we get

\rm :\longmapsto\: 9(1 - {cos}^{2}A) +  25(1 - {sin}^{2}A) + 30sinAcosA = 25

\rm :\longmapsto\: 9 - 9{cos}^{2}A +  25 - 2{sin}^{2}A + 30sinAcosA = 25

\rm :\longmapsto\:  - 9{cos}^{2}A - 25{sin}^{2}A + 30sinAcosA =  - 9

\rm :\longmapsto\:  9{cos}^{2}A +  25{sin}^{2}A  -  30sinAcosA =   9

\rm :\longmapsto\:  {(3cosA)}^{2}+  {(5sinA)}^{2}  -  30sinAcosA =   9

\rm :\longmapsto\:  {(3cosA)}^{2}+  {(5sinA)}^{2}  -  2(5sinA)(3cosA) =   9

\rm :\longmapsto\:(5sinA - 3cosA)^{2}  = 9

 \red{\bf\implies \: \red{\boxed{ \rm{ \: 5sinA - 3cosA =  \:  \pm \: 3 \:  \: }}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions