Math, asked by AakashDj, 6 months ago

Dare to solve this question
 \sf if \: cosec \theta - sin \theta =  {a}^{3}  \: and \: sec \theta - cos \theta =  {b}^{3}
prove that a²b²(a²+b²)=1​

Answers

Answered by Anonymous
2

Step-by-step explanation:

see this image you will get it

Attachments:
Answered by Anonymous
109

\pink\bigstarSOLUTION:-

⠀⠀⠀

Given that,

 \sf \star cosec \theta - sin \theta =  {a}^{3}

Now using below trignometric identity:-

 \longrightarrow   \bf\dfrac{1}{cosec \theta} = sin \theta

⠀⠀⠀

We have ,

 \implies  \sf\dfrac{1}{sin \theta}  - sin \theta =  {a}^{3}

  \implies \sf \dfrac{ 1 - sin^{2} \theta }{sin \theta}  =  {a}^{3}

⠀⠀⠀

Using below trignometric identity:-

 \bf \longrightarrow1 - sin ^{2}  \theta = cos^{2}  \theta

⠀⠀⠀

We have ,

 \implies  \sf\dfrac{cos^{2} \theta }{sin \theta}  =  {a}^{3}

 \implies \sf a = \sqrt{\dfrac{(cos \theta)^{2}  }{sin \theta} }

 \implies \bf a =  \sqrt{ \dfrac{(cos \theta)^{ \frac{2}{3} } }{(sin \theta) ^{ \frac{1}{3} } } } .....(1)

⠀⠀⠀

Again , Given that,

 \sf \star sec \theta - cos \theta =  {b}^{3}

⠀⠀⠀

Using below trignometric identity

 \bf \longrightarrow sec \theta =  \dfrac{1}{cos \theta}

⠀⠀⠀

We have,

 \implies \sf \dfrac{1}{cos \theta}  - cos \theta =  {b}^{3}

 \implies \sf \dfrac{1 - cos ^{2} \theta }{cos \theta}  =  {b}^{3}

Using below trignometric identity

 \bf \longrightarrow 1 -  {cos}^{2}  \theta = {sin}^{2}  \theta

⠀⠀⠀

We have

 \implies \sf \dfrac{sin^{2} \theta }{cos \theta}  =  {b}^{3}

 \implies \sf b =  \sqrt{ \dfrac{(sin \theta)^{2} }{cos \theta} }

 \implies \bf b =  \dfrac{(sin \theta)^{ \frac{2}{3} } }{(cos \theta)^{ \frac{1}{3} } } ......(2)

⠀⠀⠀

Now , LHS=a²b²(a²+b²)

Using (1) and (2) we have

⠀⠀⠀

 \bf =  \dfrac{(cos \theta)^{ \frac{4}{3} } }{(sin \theta)^{ \frac{2}{3} } }  \times \dfrac{(cos \theta)^{ \frac{4}{3} } }{(sin \theta)^{ \frac{2}{3} } }   \bigg \{\dfrac{(cos \theta)^{ \frac{4}{3} } }{(sin \theta)^{ \frac{2}{3} } }   + \dfrac{(cos \theta)^{ \frac{4}{3} } }{(sin \theta)^{ \frac{2}{3} } }   \bigg \}

⠀⠀⠀

 \bf = (cos \theta) ^{\frac{2}{3} } \times (sin \theta) ^{ \frac{2}{3} }  \bigg \{ \dfrac{(cos \theta)^{2}  + (sin \theta)^{2} }{(sin \theta)^{ \frac{2}{3} }  \times (cos \theta)^{ \frac{2}{3} } }\bigg\}

⠀⠀⠀

 \bf =  \dfrac{ \cancel{(cos \theta) ^{ \frac{2}{3} } .(sin \theta)^{ \frac{2}{3}} } .(cos^{2} \theta + sin^{2} \theta) }{ \cancel{(cos \theta) ^{ \frac{2}{3} } .(sin \theta)^{ \frac{2}{3} }} }

⠀⠀⠀

 =  \bf(cos^{2}  \theta + sin ^{2}  \theta)

⠀⠀⠀

 = 1

Hence,RHS=LHS Proved

Similar questions