Math, asked by tanu5951, 1 year ago

Date 1-12
simplify? V6
V2 +V3
+ 32
V6+ V3
– 412
V6 + V2​

Attachments:

Answers

Answered by praneethks
18

Step-by-step explanation:

 \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}} +  \frac{3 \sqrt{2} }{ \sqrt{6} +  \sqrt{3} } -  \frac{4 \sqrt{3} }{ \sqrt{6} +  \sqrt{2} } =  >

Rationalise all denominators of three fractions the we get

 \frac{ \sqrt{6}( \sqrt{3} -  \sqrt{2})} {( \sqrt{3} -  \sqrt{2})( \sqrt{3} +  \sqrt{2})} +  \frac{3 \sqrt{2}( \sqrt{6}  -  \sqrt{3})}{( \sqrt{6} -  \sqrt{3})( \sqrt{6} +  \sqrt{3})}

 -  \frac{4 \sqrt{3}( \sqrt{6} -  \sqrt{2})}{( \sqrt{6} -  \sqrt{2})( \sqrt{6} +  \sqrt{2})} =  >

 \frac{ \sqrt{6}( \sqrt{3} -  \sqrt{2})}{3 - 2}  +  \frac{3 \sqrt{2}( \sqrt{6} -  \sqrt{3})}{6 - 3} -  \frac{4 \sqrt{3}( \sqrt{6} -  \sqrt{2}) }{6 - 2}

 =  >  \sqrt{6}( \sqrt{3} -  \sqrt{2}) +  \sqrt{2}( \sqrt{6} -  \sqrt{3})

 -  \sqrt{3}( \sqrt{6} -  \sqrt{2}) =  >

 \sqrt{18}  -  \sqrt{12} +  \sqrt{12}  -  \sqrt{6} -  \sqrt{18}  +

 \sqrt{6} =  > 0

Hope it helps you.

Similar questions