Math, asked by vishal718894, 1 year ago

Date ID
Page
1- Cose
Clossero - Cost or
at Goso​

Attachments:

Answers

Answered by IamIronMan0
0

Answer:

 \frac{1 -  \cos(x) }{1 +  \cos(x) }  \times  \frac{1 -  \cos(x) }{1 -  \cos(x) }  \\  \\  ={ (1 -  \cos(x))  {}^{2} \over1 -   \cos {}^{2} (x)}  \\  \\  =  \frac{(1 -  \cos(x)) {}^{2}  }{ \sin {}^{2} (x) }  \\  \\  = \bigg ( \frac{1 -  \cos(x) }{ \sin(x) }  \bigg) {}^{2}  \\  \\  = \bigg ( \frac{1  }{ \sin(x) }  -  \frac{ \cos(x) }{ \sin(x) }  \bigg) {}^{2}  \\  \\  {  = (\cosec(x) -  \cot(x) ) } {}^{2}

Answered by jayajinkya35
0

Step-by-step explanation:

Given:

 \frac{1 -  \cos( \beta ) }{1 +  \cos( \beta ) }  = ( \csc( \beta )  -  \cot( \beta ) {})^{2}

By L.H.S:-

 \frac{1 -  \cos( \beta ) }{1 +  \cos( \beta ) }

multiplying both numerator and denominator by (1-cos(beta))

 \frac{1 -  \cos( \beta ) }{1 +  \cos( \beta ) }  \times  \frac{1 - cos \beta }{1  -  \cos( \beta ) }

 \frac{1 -2  \cos( \beta ) +  \cos {}^{2} ( \beta )  }{1 - cos {}^{2} }

we get;

 \frac{1 +  \cos {}^{2} ( \beta )    - 2cos \beta }{ \sin {}^{2} ( \beta ) }

Since,

1 -  \cos {}^{2}  \beta  =  \sin( \beta )

 \frac{1}{ \sin {}^{2} ( \beta ) }  +  \frac{cos {} ^{2} \beta  }{ \sin {}^{2} ( \beta )  } -  \frac{2 \cos( \beta ) }{ \sin {}^{2} ( \beta ) }

We know,.

Reciprocal of sin square is cosec square,

cos square ÷sin square is cot square

Therefore,

  \csc {}^{2} ( \beta )  + cot {}^{2}  \beta  - 2

Putting

cot {}^{2}  \beta . \ \csc {}^{2} \beta = 1

 \csc {}^{2} ( \beta )  +  \cot^{2} ( \beta )  - 2 \cot( \beta )  \times  \csc( \beta )

but,it is equal to

R.H.S

i.e.

( \csc {}  \beta - cot {}\beta ) {}^{2}

R.H.S

since,

L.H.S=R.H.S

Hence,proved.

Similar questions