Date
Page
Q. Divide 32 into the two parts such
that the sum of their Reciprocal
is 1/6. The two parts are ______and _______
Answers
Answer:
8 and 24
Step-by-step explanation:
Given:
- The sum of reciprocal
To Find:
- The two numbers
Solution:
Let first part be x
Other part=32-x
ACQ,
If x-8=0
x=8
If x-24=0
x=24
Both x are correct
First part= 8
Other part=32-x=32-8=24
Answer:
8 and 24
Step-by-step explanation:
Given:
The sum of reciprocal
To Find:
The two numbers
Solution:
Let first part be x
Other part=32-x
ACQ,
\begin{gathered} \therefore \: \tt \leadsto \frac{1}{x} + \frac{1}{32 - x} = \frac{1}{6} \\ \sf \: \\ \sf LCM \: of \: x,32 - x,6 \\ \longrightarrow \sf \: ( x)(32 - x)(6) \\ \\ \tt \leadsto \: \frac{ \cancel{(x)} {(32 - x)}(6)}{ \cancel{x}} + \frac{(x)\cancel{(32 - x)}(6)}{ \cancel{32 - x} } = \frac{(x)(32 - x) \cancel{(6)}} { \cancel{6}} \\ \tt \leadsto \: 6(32 - x) + 6x = x(32 - x) \\ \tt \leadsto192 - 6x + 6x = 32x - {x}^{2} \\ \tt \leadsto \: {x }^{2} - 32x + 192 = 0 \\ \tt \leadsto {x }^{2} - 8x- 24x + 192 = 0 \\ \tt \leadsto \: x(x - 8) - 24(x - 8) = 0 \\ \tt \leadsto(x - 8)(x - 24) = 0\end{gathered}
∴⇝
x
1
+
32−x
1
=
6
1
LCMofx,32−x,6
⟶(x)(32−x)(6)
⇝
x
(x)
(32−x)(6)
+
32−x
(x)
(32−x)
(6)
=
6
(x)(32−x)
(6)
⇝6(32−x)+6x=x(32−x)
⇝192−6x+6x=32x−x
2
⇝x
2
−32x+192=0
⇝x
2
−8x−24x+192=0
⇝x(x−8)−24(x−8)=0
⇝(x−8)(x−24)=0
If x-8=0
x=8
If x-24=0
x=24
Both x are correct
First part= 8
Other part=32-x=32-8=24