Math, asked by STUDENT5A0, 1 month ago

David has 8 days to make components for an electric car to sell at a local garage.
Each day, he must make at least 5 batteries and 3 plugs.
Each battery weighs 1 pound and each plug weighs 2 pounds.
David can carry a maximum of 100 pounds to the garage.
He will make $12 profit for every battery and $15 profit for every plug that he sells.

Write three linear inequalities to represent the number of batteries b and plugs p David can make and bring to the garage.

Answers

Answered by ahmederaky1
0

Answer:

No.of batteries=6

No.of plugs=3

Step-by-step explanation:

x≥5

y≥3

8x+16y≤100

the vertices of the feasible region

(5,3.75)

(5,3)

(6.5,3)

No.of batteries=6

No.of plugs=3

Attachments:
Answered by HolyGirl
1

 {\orange{\bigstar}} \ {\underline{\green{\textsf{\textbf{Given :-}}}}}

Diameter of the circle = 42 m

Cost of cleaning per m² = ₹2.35

 {\blue{\bigstar}} \ {\underline{\pink{\textsf{\textbf{To Find :-}}}}}

Cost of cleaning the whole field

 {\red{\bigstar}} \ {\underline{\purple{\textsf{\textbf{Formula Used :-}}}}}

 {\boxed{\green{\textsf{\textbf{Area of a circle = }}} {\blue{\sf{\pi r^2}}}}}

where,

r = Radius

 {\sf{\pi = \dfrac{22}{7}}}

 {\orange{\bigstar}} \ {\underline{\blue{\textsf{\textbf{Solution :-}}}}}

 Radius = {\sf{\dfrac{Diameter}{2}}}

 \longmapsto {\sf{\dfrac{42}{2}}}

 \longmapsto {\sf{21 \ m}}

 {\pink{\textsf{\textbf{Radius = 21 m}}}}

According to the question by using the formula of Area of a Circle, we get,

 \dashrightarrow \ {\green{\sf{Area \ of \ circular \ field = (\pi \times 21^2) \ m^2}}}

Solving the above equation,

 : \ \Longrightarrow \ {\sf{ \bigg ( \dfrac{22}{7} \times 21^2 \bigg ) \ m^2}}

 : \ \Longrightarrow \ {\sf{ \bigg ( \dfrac{22}{7} \times 21 \times 21 \bigg ) \ m^2}}

 : \ \Longrightarrow \ {\sf{ \bigg ( \dfrac{22}{7} \times 441 \bigg ) \ m^2}}

 : \ \Longrightarrow \ {\sf{ \bigg ( \dfrac{22}{{\cancel{7}}^{ \ 1}} \times {\cancel{441}}^{ \ 63} \bigg ) \ m^2}}

 : \ \Longrightarrow \ {\sf{(22 \times 63) \ m^2}}

 : \ \Longrightarrow \ {\sf{1,386 \ m^2}}

 {\blue{\textsf{\textbf{Area of the circular field = 1,386 sq. m.}}}}

Cost of cleaning the field = ₹ (1,386 × 2.35)

 : \ \Longrightarrow \ {\sf{\purple{Rs. \ 3257.1}}}

 {\boxed{\orange{\textsf{\textbf{Cost of cleaning the field is Rs. 3257.1}}}}}

Similar questions