Math, asked by sthixton, 2 months ago

Davie and Horatio are riding their motorbikes on a scenic tour that is 80 miles long. Davie rides at 20 miles per hour and leaves 90 minutes before Horatio. How fast must Horatio ride to finish at the same time as Davie?

Answers

Answered by Heroicheist
24

Answer:

QUESTION

\begin{gathered}\tt The\: perimeter\: of\: an \:equilateral\: triangle\: is \:60\:m \\\tt what\: will \:be\: its\: area?\end{gathered}

Theperimeterofanequilateraltriangleis60m

whatwillbeitsarea?

\sf \bf \huge {\boxed {\mathbb {ANSWER}}}

ANSWER

\sf \bf {\boxed {\mathbb {GIVEN}}}

GIVEN

\bf Perimeter \:of \:the \:equilateral \:triangle(P) = 60\:mPerimeteroftheequilateraltriangle(P)=60m

\sf \bf {\boxed {\mathbb {TO\:FIND}}}

TOFIND

\bf Area\:of \:the \:equilateral \:triangle(A)Areaoftheequilateraltriangle(A)

\sf \bf {\boxed {\mathbb {SOLUTION}}}

SOLUTION

{\pink {\underline {\bf {\pmb {Side\:of \:the \:equilateral \:triangle(a)}}}}}

Sideoftheequilateraltriangle(a)

Sideoftheequilateraltriangle(a)

{\blue {\boxed {\boxed {\boxed {\green {\pmb {P=3a}}}}}}}

P=3a

P=3a

\sf P=perimeter \:of \:the \:equilateral \:triangleP=perimeteroftheequilateraltriangle

\sf a=side \:of \:the \:equilateral \:trianglea=sideoftheequilateraltriangle

{\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

Substitutethevalues

Substitutethevalues

\bf \implies 60=3a⟹60=3a

\bf \implies a=\dfrac{60}{3}⟹a=

3

60

\bf \implies a=\dfrac{\cancel{60}}{\cancel{3}}⟹a=

3

60

\implies {\blue {\boxed {\boxed {\purple {\sf a=20\:m}}}}}⟹

a=20m

—————————————————————————————

{\pink {\underline {\bf {\pmb {Semiperimeter \:of \:the \:equilateral \:triangle(S)}}}}}

Semiperimeteroftheequilateraltriangle(S)

Semiperimeteroftheequilateraltriangle(S)

{\blue {\boxed {\boxed {\boxed {\green {\pmb {S=\dfrac{P}{2}}}}}}}}

S=

2

P

S=

2

P

\sf S=semiperimeter \:of \:the \:equilateral \:triangleS=semiperimeteroftheequilateraltriangle

\sf P=perimeter \:of \:the \:equilateral \:triangleP=perimeteroftheequilateraltriangle

{\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

Substitutethevalues

Substitutethevalues

\bf \implies S=\dfrac{60}{2}⟹S=

2

60

\bf \implies S=\dfrac{\cancel{60}}{\cancel{2}}⟹S=

2

60

\implies {\blue {\boxed {\boxed {\purple {\sf S=30\:m}}}}}⟹

S=30m

—————————————————————————————

{\pink {\underline {\bf {\pmb {Area \:of \:the \:equilateral \:triangle(A)}}}}}

Areaoftheequilateraltriangle(A)

Areaoftheequilateraltriangle(A)

{\orange{\sf {In \:equilateral \:triangle \:all\: sides \:are \:equal}}}Inequilateraltriangleallsidesareequal

\longrightarrow {\boxed {\sf a=b=c=20}}⟶

a=b=c=20

{\blue {\boxed {\boxed {\boxed {\green {\pmb {A=\sqrt{S\Big(S-a\Big)\Big(S-b\Big)\Big(S-c\Big)}}}}}}}}

A=

S(S−a)(S−b)(S−c)

A=

S(S−a)(S−b)(S−c)

\sf S=semiperimeter \:of \:the \:equilateral \:triangleS=semiperimeteroftheequilateraltriangle

\sf A=area\:of \:the \:equilateral \:triangleA=areaoftheequilateraltriangle

\sf a=side \:of \:the \:equilateral \:trianglea=sideoftheequilateraltriangle

{\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

Substitutethevalues

Substitutethevalues

\bf \implies A=\sqrt{30\Big(30-20\Big)\Big(30-20\Big)\Big(30-20\Big)}⟹A=

30(30−20)(30−20)(30−20)

\bf \implies A=\sqrt{30\Big(10\Big)\Big(10\Big)\Big(10\Big)}⟹A=

30(10)(10)(10)

\bf \implies A=\sqrt{30\times 10\times 10\times 10}⟹A=

30×10×10×10

\bf \implies A=\sqrt{30000}⟹A=

30000

\bf \implies A=\sqrt{10000\times 3}⟹A=

10000×3

\implies {\blue {\boxed {\boxed {\purple {\mathfrak {A=100\sqrt{3}\:{m}^{2}}}}}}}⟹

A=100

3

m

2

{\underbrace {\red {\overline {\red {\underline {\red {\sf {\pmb {{\therefore} The\:area \:of \:the \:equilateral \:triangle \:is\:100\sqrt{3}\:{m}^{2}}}}}}}}}}

∴Theareaoftheequilateraltriangleis100

3

m

2

∴Theareaoftheequilateraltriangleis100

3

m

2

\sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

HOPEITHELPSYOU

___________________________________________

\sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

EXTRAINFORMATION

\sf Area\:of \:triangle = \dfrac{1}{2}bhAreaoftriangle=

2

1

bh

\sf Perimeter \:of \:triangle =a+b+cPerimeteroftriangle=a+b+c

Answered by barnejul
0

Answer:

The answer is 32 mph

Step-by-step explanation:

I got the answer right on my quiz I just finished! :)

Similar questions