Math, asked by UserUnknown57, 9 days ago

Day 10,
Show that:
\large \sf \dfrac{sin(x+y)}{sin(x-y)}=\dfrac{tan\:x+tan\:y}{tan\:x-tan\:y}

Please don't scam otherwise reported

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider RHS

\rm :\longmapsto\:\dfrac{tanx + tany}{tanx - tany}

can be rewritten as

 \rm =  \: \dfrac{\dfrac{sinx}{cosx}  + \dfrac{siny}{cosy} }{\dfrac{sinx}{cosx}   -  \dfrac{siny}{cosy} }

 \rm =  \: \dfrac{\dfrac{sinxcosy + sinycosx}{cosx \: cosy}}{\dfrac{sinx \: cosy - sinycosx}{cosx \: cosy}}

 \rm =  \: \dfrac{sinx \: cosy \:  +  \: siny \: cosx}{sinx \: cosy \:  -  \: siny \: cosx}

 \rm =  \: \dfrac{sin(x + y)}{sin(x - y)}

Hence,

\rm \implies\:\boxed{ \tt{ \:  \frac{tanx + tany}{tanx - tany}  =  \: \dfrac{sin(x + y)}{sin(x - y)}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Alternative Method

Consider LHS

\rm :\longmapsto\:\dfrac{sin(x + y)}{sin(x - y)}

 \rm =  \: \dfrac{sinx \: cosy \:  +  \: siny \: cosx}{sinx \: cosy \:  -  \: siny \: cosx}

On dividing numerator and denominator by cosx cosy,

 \rm =  \: \dfrac{\dfrac{sinxcosy + sinycosx}{cosx \: cosy}}{\dfrac{sinx \: cosy - sinycosx}{cosx \: cosy}}

 \rm =  \: \dfrac{\dfrac{sinx}{cosx}  + \dfrac{siny}{cosy} }{\dfrac{sinx}{cosx}   -  \dfrac{siny}{cosy} }

 \rm =  \: \dfrac{tanx + tany}{tanx - tany}

Hence,

\rm \implies\:\boxed{ \tt{ \:  \frac{tanx + tany}{tanx - tany}  =  \: \dfrac{sin(x + y)}{sin(x - y)}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: sin(x + y) = sinxcosy + sinycosx \: }}

\boxed{ \tt{ \: sin(x  -  y) = sinxcosy  -  sinycosx \: }}

\boxed{ \tt{ \: cos(x + y) = cosxcosy - sinysinx \: }}

\boxed{ \tt{ \: cos(x  -  y) = cosxcosy  +  sinysinx \: }}

\boxed{ \tt{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }}

\boxed{ \tt{ \: tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanx \: tany} \: }}

Answered by TanmayStatus
4

\large\underline{\sf\red{Solution-}}

Consider RHS

\rm\pink{ :\longmapsto\:\dfrac{tanx + tany}{tanx - tany}}

can be rewritten as

\rm\blue{ = \: \dfrac{\dfrac{sinx}{cosx} + \dfrac{siny}{cosy} }{\dfrac{sinx}{cosx} - \dfrac{siny}{cosy}}}

\rm \orange{= \: \dfrac{\dfrac{sinxcosy + sinycosx}{cosx \: cosy}}{\dfrac{sinx \: cosy - sinycosx}{cosx \: cosy}}}

\rm\purple {= \: \dfrac{sinx \: cosy \: + \: siny \: cosx}{sinx \: cosy \: - \: siny \: cosx}}

\rm \green{= \: \dfrac{sin(x + y)}{sin(x - y)}}

Hence,

\rm\red{ \implies\:\boxed{ \tt{ \: \frac{tanx + tany}{tanx - tany} = \: \dfrac{sin(x + y)}{sin(x - y)} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬

Alternative Method

Consider LHS

\rm\pink{:\longmapsto\:\dfrac{sin(x + y)}{sin(x - y)}}

\rm \blue{= \: \dfrac{sinx \: cosy \: + \: siny \: cosx}{sinx \: cosy \: - \: siny \: cosx}}

On dividing numerator and denominator by cosx cosy,

\rm\orange{ = \: \dfrac{\dfrac{sinxcosy + sinycosx}{cosx \: cosy}}{\dfrac{sinx \: cosy - sinycosx}{cosx \: cosy}}}

\rm \purple{= \: \dfrac{\dfrac{sinx}{cosx} + \dfrac{siny}{cosy} }{\dfrac{sinx}{cosx} - \dfrac{siny}{cosy}}}

\rm\green{ = \: \dfrac{tanx + tany}{tanx - tany}}

Hence,

\rm\blue{ \implies\:\boxed{ \tt{ \: \frac{tanx + tany}{tanx - tany} = \: \dfrac{sin(x + y)}{sin(x - y)} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\boxed{ \tt{ \: sin(x + y) = sinxcosy + sinycosx \: }}}

\purple{\boxed{ \tt{ \: sin(x - y) = sinxcosy - sinycosx \: }}}

\green{\boxed{ \tt{ \: cos(x + y) = cosxcosy - sinysinx \: }}}

\pink{\boxed{ \tt{ \: cos(x - y) = cosxcosy + sinysinx \: }}}

\blue{\boxed{ \tt{ \: tan(x + y) = \frac{tanx + tany}{1 - tanx \: tany} \: }}}

\purple{\boxed{ \tt{ \: tan(x - y) = \frac{tanx - tany}{1 + tanx \: tany} \: }}}

I hope it's helps you ❤️.

Please markerd as brainliest answer ✌️✌️.

Similar questions