Math, asked by UserUnknown57, 24 days ago

Day 6,

Five numbers are in A.P., whose sum is 25 and product is 2520. If one of these five numbers is −1/2 , then the greatest number amongst them is

[Answer-16]

Quality answers required Don't scam otherwise reported.​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that, 5 numbers are in AP.

Let assume that

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:5 \: numbers \: be\begin{cases} &\sf{a - 2d} \\ &\sf{a - d}\\ &\sf{a}\\ &\sf{a + d}\\ &\sf{a + 2d} \end{cases}\end{gathered}\end{gathered}}

According to statement,

Sum of 5 numbers is 25.

\rm :\longmapsto\:a - 2d + a - d + a + a + d + a + 2d = 25

\rm :\longmapsto\:5a  = 25

 \red{\rm \implies\:\boxed{ \tt{ \: a \:  =  \: 5 \:  }} -  -  - (1)}

Again, Given that,

Product of 5 numbers = 2520

\rm :\longmapsto\:(a - 2d)(a - d)a(a + d)(a + 2d) = 2520

On substituting the value of a, we get

\rm :\longmapsto\:(5 - 2d)(5 - d)5(5 + d)(5 + 2d) = 2520

\rm :\longmapsto\:(5 - 2d)(5 - d)(5 + d)(5 + 2d) = 504

\rm :\longmapsto\:(5 - 2d)(5 + 2d)(5 -  d)(5 + d) = 504

\rm :\longmapsto\:(25 -  {4d}^{2} )(25 -  {d}^{2} ) = 504

\rm :\longmapsto\:625 - 25 {d}^{2} - 100 {d}^{2} +  {4d}^{4} = 504

\rm :\longmapsto\:625 - 125 {d}^{2} +  {4d}^{4} = 504

\rm :\longmapsto\:625 - 125 {d}^{2} +  {4d}^{4} -  504 = 0

\rm :\longmapsto\:121 - 125 {d}^{2} +  {4d}^{4} = 0

\rm :\longmapsto\: {4d}^{4} - 125 {d}^{2} + 121 = 0

\rm :\longmapsto\: {4d}^{4} - 4{d}^{2} - 121 {d}^{2}  + 121 = 0

\rm :\longmapsto\: {4d}^{2}( {d}^{2} - 1) - 121( {d}^{2} - 1) = 0

\rm :\longmapsto\: ({4d}^{2} - 121)( {d}^{2} - 1) = 0

\rm \implies\: {d}^{2} = \dfrac{121}{4}  \:  \: or \:  \:  {d}^{2} = 1

\rm \implies\:d =  \pm \: \dfrac{11}{2}  \:  \: or \:  \: d =  \:  \pm \: 1

\bf\implies \:d \:  =  \: 1, \:  - 1, \: \dfrac{11}{2}, \:  -  \dfrac{11}{2}

So, we have following cases :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf a & \bf d \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 5 & \sf 1 \\ \\ \sf 5 & \sf  - 1 \\ \\ \sf 5 & \sf \dfrac{11}{2} \\ \\ \sf 5 & \sf  - \dfrac{11}{2}  \end{array}} \\ \end{gathered}

Hence, 5 Numbers in AP are

\red{\rm :\longmapsto\:When \: a = 5 \: and \: d = 1}

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:5 \: numbers \: be\begin{cases} &\sf{a - 2d = 5 - 2 = 3} \\ &\sf{a - d = 5 - 1 = 4}\\ &\sf{a = 5}\\ &\sf{a + d = 5 + 1 = 6}\\ &\sf{a + 2d = 5 + 2 = 7} \end{cases}\end{gathered}\end{gathered}}

Case - 2

\red{\rm :\longmapsto\:When \: a = 5 \: and \: d = -  1}

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:5 \: numbers \: be\begin{cases} &\sf{a - 2d = 5 + 2 = 7} \\ &\sf{a - d = 5  + 1 = 6}\\ &\sf{a = 5}\\ &\sf{a + d = 5  -  1 = 4}\\ &\sf{a + 2d = 5 - 2 = 3} \end{cases}\end{gathered}\end{gathered}}

Case - 3

\red{\rm :\longmapsto\:When \: a = 5 \: and \: d = 5.5}

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:5 \: numbers \: be\begin{cases} &\sf{a - 2d = 5 - 11 = -  6} \\ &\sf{a - d = 5 - 5.5 =  - 0.5}\\ &\sf{a = 5}\\ &\sf{a + d = 5 + 5.5 = 10.5}\\ &\sf{a + 2d = 5 + 11 = 16} \end{cases}\end{gathered}\end{gathered}}

Case - 4

\red{\rm :\longmapsto\:When \: a = 5 \: and \: d \:  =  -  \: 5.5}

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:5 \: numbers \: be\begin{cases} &\sf{a - 2d = 5  + 11 =   16} \\ &\sf{a - d = 5 + 5.5 = 10.5}\\ &\sf{a = 5}\\ &\sf{a + d = 5  -  5.5 =  - 0.5}\\ &\sf{a + 2d = 5  -  11 =  - 6} \end{cases}\end{gathered}\end{gathered}}

So,

  • If one of 5 number is - 1/2, then largest number is 16.

Similar questions