Math, asked by vedantsawant22, 10 months ago

de 10 cm and semicircles
6. Find the area of the shaded design in Figure, where ABCD is a square of side 10 cm and son
are drawn with each side of the square as diameter. (Use 3.14)
B
Verify that numbers given along side of the cubic polynomials below are their zeros. Also, verify the​

Attachments:

Answers

Answered by Shailesh183816
1

\huge\boxed{\fcolorbox{red}{yellow}{Shailesh}}

Let Unshaded regions be 1, 2, 3 and 4

 Area of 1 + Area of 3= Area of ABCD – Areas of two semicircles of each of radius 5 cm 

Area of 1 and 3 = ( 10 * 10 - 2 * 1/2 * 3.14 * 5 *5)  [Area of semi circle                                                                                         =  1/2  pie r²]

                          = (100 - 3.14 * 25)

                          = (100 - 78.5)

                          =21.5 cm²

So,

Even the Area of 2 and 4 is equal to 21.5cm²

So,

Area of shaded region = Area of ABCD - Area 0f( 1+2+3+4)

                                       = 100 - (21.5 + 21.5)

                                       = 100 - 43

Area of shaded region = 57cm²



Mark This Brainliest If This Helped u

\bf\huge\underline\red{Follow me}

Answered by Anonymous
0

\huge\star\mathfrak\blue{{Answer:-}}

Let Unshaded regions be 1, 2, 3 and 4

Area of 1 + Area of 3= Area of ABCD – Areas of two semicircles of each of radius 5 cm

Area of 1 and 3 = ( 10 * 10 - 2 * 1/2 * 3.14 * 5 *5) [Area of semi circle = 1/2 pie r²]

= (100 - 3.14 * 25)

= (100 - 78.5)

=21.5 cm²

So,

Even the Area of 2 and 4 is equal to 21.5cm²

So,

Area of shaded region = Area of ABCD - Area 0f( 1+2+3+4)

= 100 - (21.5 + 21.5)

= 100 - 43

Area of shaded region = 57cm²



Mark This Brainliest If This Helped u

Similar questions